On Some Criteria for Close-To-Convexity of Meromorphic Functions *

 $B.A. Uralegaddi^1$, $A.R. Desai^2$

(1. Dept. of Math., Karnatak University, Dharwad, India;

2. Dept. of Math., S.D.M.College of Engg. & Tech., Dharwad, India)

Abstract: By using the Ruscheweyh type derivative for meromorphic functions and some properties of the classes C_n studied earlier by Sarangi and Suguna Uralegaddi^[5], some new criteria for close-to-convexity of meromorphic functions are obtained.

Key words: Hadamard product; close-to-convex.

Classification: AMS(1991) 30C45/CLC O174.51

Document code: A **Article ID:** 1000-341X(2000)02-0177-04

1. Introduction

Let Σ denote the class of functions of the form $f(z) = \frac{1}{z} + \sum_{n=0}^{\infty} a_n z^n$ that are regular in the punctured disk $E = \{z : 0 < |z| < 1\}$ with a simple pole at z = 0. The Hadamard product or convolution of $f, g \in \Sigma$ will be denoted by f * g.

Let

$$D^{n}f(z) = \frac{1}{z(1-z)^{n+1}} * f(z), \quad n \in N_{0} = \{0, 1, 2, \dots\}$$

$$= \frac{1}{z} \frac{(z^{n+1}f(z))^{(n)}}{n!}$$

$$= \frac{1}{z} + (n+1)a_{0} + \frac{(n+1)(n+2)}{2!}a_{1}z + \dots$$

The symbol $D^n f$ which is referred as the n^{th} order Ruscheweyh type derivative of $f \in \Sigma$ was introduced by Ganigi and Uralegaddi in [1]. In [4] Sarangi and Suguna Uralegaddi have proved that if $f \in \Sigma$ satisfies the condition $\text{Re}\{1 + zf''(z)/f'(z)\} > -3/2$ then f is meromorphically close-to-convex of order 1/2. Using this result in [5] they have also shown that functions in C_n are meromorphically close-to-convex of order 1/2 through basic

^{*}Received date: 1997-03-20

inclusion relationship $C_{n+1} \subset C_n$, $n \in N_0$, where C_n is the class of functions in Σ that satisfies the condition.

$$\operatorname{Re}\left\{\frac{(D^{n+1}f(z))'}{(D^nf(z))'}\right\} > \frac{2n+1}{2n+2}, \quad z \in U = \{z : |z| < 1\}. \tag{1}$$

In this paper we obtain some criteria for close-to-convexity of $f \in \Sigma$ by using the Ruscheweyh type derivative for $f \in \Sigma$ and the properties of the class C_n . Methods used are similar to those of M.Obradovic^[3]. We need the following lemma due to Jack^[2].

Lemma Let w be nonconstant and analytic in the unit disk U, w(0) = 0. If |w| attains its maximum value on the circle |z| = r < 1 at z_0 , we have $z_0 w'(z_0) = k w(z_0)$ where k is real number and k > 1.

2. Some criteria for close-to-convexity

Theorem 1 Let $f \in \Sigma$, $\frac{\alpha}{2n+4} \ge \frac{\beta}{2n+1} \ge 0, n \in N_0$ and let

$$\operatorname{Re}\left\{\alpha \frac{(D^{n+2}f(z))'}{(D^{n+1}f(z))'} + \beta \frac{(D^nf(z))'}{(D^{n+1}f(z))'}\right\} > \alpha \left(\frac{2n+3}{2n+4}\right) + \beta \left(\frac{2n+2}{2n+1}\right), \quad z \in U.$$
 (2)

then $f \in C_n$. Hence f is meromorphic close-to-convex of order 1/2.

Proof Let $f \in \Sigma$ satisfy the condition (2). Now we shall show that $f \in C_n$, i.e.

$$\operatorname{Re}\left\{\frac{(D^{n+1}f(z))'}{(D^nf(z))'}\right\} > \frac{2n+1}{2n+2}, \ z \in U.$$

Define w(z) in U by

$$\left\{\frac{(D^{n+1}f(z))'}{(D^nf(z))'}\right\} = \frac{2n+1}{2n+2} + \frac{1}{2n+2} \cdot \frac{1-w(z)}{1+w(z)} = \frac{(n+1)+nw(z)}{(n+1)(1+w(z))}$$
(3)

Clearly w(z) is analytic in U and w(0) = 0. We shall prove that |w(z)| < 1 in U. Differentiating (3) logarithmically and using the identity

$$z(D^n f(z))'' = (n+1)(D^{n+1} f(z))' - (n+3)(D^n f(z))', \tag{4}$$

which follows from the identity [1]

$$z(D^n f(z))' = (n+1)D^{n+1} f(z) - (n+2)D^n f(z).$$
 (5)

We have

$$\frac{(D^{n+2}f(z))'}{(D^{n+1}f(z))'} = \frac{2n+3}{2n+4} + \frac{n+1}{(n+2)(2n+2)} \cdot \frac{1-w(z)}{1+w(z)} - \frac{zw'(z)}{(n+2)(1+w(z))(n+1+nw(z))}.$$
(6)

Hence we have

$$\alpha \frac{(D^{n+2}f(z))'}{(D^{n+1}f(z))'} + \beta \frac{(D^{n}f(z))'}{(D^{n+1}f(z))'}
= \frac{\alpha}{n+2} \left[\frac{2n+3}{2} + \frac{n+1}{2n+2} \cdot \frac{1-w(z)}{1+w(z)} - \frac{zw'(z)}{(1+w(z))(n+1+nw(z))} \right] + \beta \frac{(n+1)(1+w(z))}{(n+1)+nw(z)}.$$
(7)

Now we claim that |w(z)| < 1. For otherwise by Jack's lemma there exists $z_0, |z_0| < 1$ such that $|w(z_0)| = 1$,

$$z_0w'(z_0)=kw(z_0), \ k\geq 1.$$

Then from (7), we have

$$\alpha \frac{(D^{n+2}f(z_0))'}{(D^{n+1}f(z_0))'} + \beta \frac{(D^n f(z_0))'}{(D^{n+1}f(z_0))'} \\
= \frac{\alpha}{n+2} \left[\frac{2n+3}{2} + \frac{n+1}{2n+2} \cdot \frac{1-w(z_0)}{1+w(z_0)} - \frac{kw(z_0)}{(1+w(z_0))(n+1+nw(z_0))} \right] + \\
\beta \frac{(n+1)(1+w(z_0))}{(n+1)+nw(z_0)}.$$
(8)

Thus we have

$$\begin{split} & \operatorname{Re} \{ \alpha \frac{(D^{n+2} f(z_0))'}{(D^{n+1} f(z_0))'} + \beta \frac{(D^n f(z_0))'}{(D^{n+1} f(z_0))'} \\ & \leq \alpha \frac{4n^2 + 8n + 2}{(2n+4)(2n+1)} + \beta \frac{2n+2}{2n+1} < \alpha \frac{2n+3}{2n+4} + \beta \frac{2n+2}{2n+1}. \end{split}$$

Which contradicts (2). It follows that $f \in C_n$. Hence f is close-to-convex of order 1/2. Since for z = 0 the left hand side of (2) have the value $\alpha + \beta$, the condition $\frac{\alpha}{2n+4} \ge \frac{\beta}{2n+1} \ge 0$ is necessary.

Theorem 2 Let $f \in \Sigma, \alpha \geq 0, \beta \geq 0, n \in N_0$. If

$$\left|\frac{(D^{n+2}f(z))'}{(D^{n+1}f(z))'} - 1\right|^{\alpha} \left|\frac{(D^{n+1}f(z))'}{(D^{n}f(z))'} - 1\right|^{\beta} < \left(\frac{n+1}{(n+2)(2n+1)}\right)^{\alpha} 2^{-\beta} (n+1)^{-\beta}, \tag{9}$$

then $f \in C_n$. Hence f is meromorphic close-to-convex of order 1/2.

Proof Let $f \in \Sigma$ satisfy the inequality (9). Proceeding as in Theorem 1, from (3) and (6) we have

$$\left| \frac{(D^{n+2}f(z))'}{(D^{n+1}f(z))'} - 1 \right|^{\alpha} \left| \frac{(D^{n+1}f(z))'}{(D^{n}f(z))'} - 1 \right|^{\beta}
= (n+2)^{-\alpha}(n+1)^{-\beta} \left| \frac{1}{2} - \frac{n+1}{2n+2} \cdot \frac{1-w(z)}{1+w(z)} + \frac{zw'(z)}{(1+w(z))(n+1+nw(z))} \right|^{\alpha} \left| \frac{w(z)}{1+w(z)} \right|^{\beta}.$$
(10)

Now we claim that |w(z)| < 1. For otherwise by Jack's lemma there is a $z_0, |z_0| < 1$ such that $|w(z_0)| = 1, z_0 w'(z_0) = k w(z_0), k \ge 1$. Then from (10) we have

$$\left| \frac{(D^{n+2}f(z_0))'}{(D^{n+1}f(z_0))'} - 1 \right|^{\alpha} \left| \frac{(D^{n+1}f(z_0))'}{(D^nf(z_0))'} - 1 \right|^{\beta} \\
= (n+2)^{-\alpha}(n+1)^{-\beta} \left| \frac{1}{2} - \frac{n+1}{2n+2} \cdot \frac{1-w(z_0)}{1+w(z_0)} + \frac{kw(z_0)}{(1+w(z_0))(n+1+nw(z_0))} \right|^{\alpha} \left| \frac{w(z_0)}{1+w(z_0)} \right|^{\beta}. \tag{11}$$

$$\operatorname{Re}\left\{\frac{1}{2} - \frac{n+1}{2n+2} \cdot \frac{1-w(z_0)}{1+w(z_0)} + \frac{kw(z_0)}{(1+w(z_0))(n+1+nw(z_0))}\right\} \tag{12}$$

$$\geq \frac{1}{2} + \frac{1}{2(2n+1)} = \frac{n+1}{2n+1}, \operatorname{Re}\left\{\frac{w(z_0)}{1+w(z_0)}\right\} = \frac{1}{2}.$$
 (13)

Since $|z| \ge |\text{Re}z|$ for all z, we have from (11)

$$\left| \frac{(D^{n+2}f(z_0))'}{(D^{n+1}f(z_0))'} - 1 \right|^{\alpha} \left| \frac{(D^{n+1}f(z_0))'}{(D^nf(z_0))'} - 1 \right|^{\beta} \\
\geq (n+2)^{-\alpha}(n+1)^{-\beta} \left(\frac{n+1}{2n+1} \right)^{\alpha} 2^{-\beta} \\
= \left(\frac{n+1}{(n+2)(2n+1)} \right)^{\alpha} 2^{-\beta}(n+1)^{-\beta}.$$

Which contradicts (9). Hence |w(z)| < 1 and $f \in C_n$.

References:

- [1] GANIGI M D and URALEGADDI B A. New criteria for meromorphic univalent functions [J]. Bull. Math. de la Soc. Sci. Math. de la R.S. de Roumanie, 33(81), 1989, 1: 9-13.
- [2] JACK I S. Functions starlike and convex of order α[J]. J. London Math. Soc., 1971, 2(3): 469-474.
- [3] OBRADOVIC M. On some criteria for starlikeness in the unit disc [J], FILOMAT (Nis), 1993, 7: 87-91.
- [4] SARANGI S M and SUGUNA B U. Certain sufficient conditions for close-to-convexity and starlikeness of meromorphic functions [J]. To appear in Maths Student.
- [5] SARANGI S M and SUGUNA B U. New criteria for meromorphic close-to-convex functions [M]. Submitted for publication.