An Inequality for the Determinant of the GCD Matrix and the GCUD Matrix *

PENTTI Haukkanen, JUHA SIllanpää (Dept. of Math. Sci., University of Tampere P.O.Box 607, FIN-33101 Tampere, Finland)

Abstract: Let $S = \{x_1, x_2, ..., x_n\}$ be a set of distinct positive integers. The $n \times n$ matrix (S) whose i, j-entry is the greatest common divisor (x_i, x_j) of x_i and x_j is called the GCD matrix on S. A divisor d of x is said to be a unitary divisor of x if (d, x/d) = 1. The greatest common unitary divisor (GCUD) matrix (S^{**}) is defined analogously. We show that if S is both GCD-closed and GCUD-closed, then $\det(S^{**}) \geq \det(S)$, where the equality holds if and only if $(S^{**}) = (S)$.

Key words: Smith's determinant; GCD matrix; unitary analogue; inequality.

Classification: AMS(1991) 11C20,11A25,15A36/CLC O156.1, O151.21

Document code: A **Article ID:** 1000-341X(2000)02-0181-06

1. Introduction

Let $S = \{x_1, x_2, ..., x_n\}$ be a set of distinct positive integers. The $n \times n$ matrix (S) whose i, j-entry is the greatest common divisor (x_i, x_j) of x_i and x_j is called the GCD matrix on S (see [1]).

A divisor d of x is said to be a unitary divisor of x if (d, x/d) = 1. If d is a unitary divisor of x, we write d||x|. The greatest common unitary divisor of x_i and x_j is denoted by $(x_i, x_j)^{**}$. The $n \times n$ matrix (S^{**}) whose i, j-entry is the greatest common unitary divisor $(x_i, x_j)^{**}$ is called the GCUD matrix on S (see [3]).

The set S is said to be factor-closed if it contains every divisor of any element of S, and the set S is said to be GCD-closed if it contains the greatest common divisor of any two elements of S. Unitary divisor -closed (UD-closed) sets and GCUD-closed sets are defined analogously. It can be verified that

- i) S is factor-closed \Rightarrow S is GCD-closed,
- ii) S is factor-closed \Rightarrow S is UD-closed \Rightarrow S is GCUD-closed.

 $H.J.S.Smith^{[8]}$ showed that if S is factor-closed, then

$$\det(S) = \prod_{k=1}^{n} \phi(x_k), \tag{1}$$

*Received date: 1997-07-15

Biography: PENTTI HAUKKANEN (1959-), male, Ph.D.

where ϕ is Euler's totient function. Beslin and Ligh^[2] showed that if S is GCD-closed, then

$$\det(S) = \prod_{k=1}^{n} \sum_{\substack{d \mid x_k \\ d \mid dt_1 \\ x_l < x_k}} \phi(d). \tag{2}$$

If S is factor-closed, then (2) reduces to (1).

It is known^[3] that if S is UD-closed, then

$$\det(S^{**}) = \prod_{k=1}^{n} \phi^{*}(x_{k}), \tag{3}$$

where ϕ^* is the unitary analogue of Euler's totient function [7]. It is also known [3] that if S is GCUD-closed, then

$$\det(S^{**}) = \prod_{\substack{k=1 \ d \mid x_k \\ d \nmid x_i \\ x_i < x_k}} \phi^*(d). \tag{4}$$

If S is UD-closed, then (4) reduces to (3).

Euler's totient function ϕ and its unitary analogue ϕ^* are multiplicative functions such that for all prime powers p^a (> 1)

$$\phi(p^a) = p^a - p^{a-1},$$

 $\phi^*(p^a) = p^a - 1.$

Thus $\phi^*(x) \ge \phi(x)$ for all positive integers x. If S is a factor-closed set, then (1) and (3) hold and further

$$\det(S^{**}) \ge \det(S). \tag{5}$$

In this paper we show that if S is both GCD-closed and GCUD-closed, then (5) holds, and the equality in (5) holds if and only if $(S^{**}) = (S)$, see Section 2.

If S is factor-closed, then S is both GCD-closed and GCUD-closed. Therefore (5) for factor-closed sets is a special case of our result. Note that there also exists an infinite number of sets S which are both GCD-closed and GCUD-closed but which are not factor-closed. For example, all sets of the form $S_1 = \{p, pq\}$ and $S_2 = \{1, p, p^3\}$, where p and q are distinct primes, are both GCD-closed and GCUD-closed but are not factor-closed. Here $(S_1) = (S_1^{**})$ and $(S_2) \neq (S_2^{**})$.

At the end of this paper we discuss briefly another unitary analogue of the GCD matrix than the GCUD matrix, see Section 3.

2. The main results

Theorem 2.1 If S is both GCD-closed and GCUD-closed, then

$$\det(S^{**}) \ge \det(S)$$
.

Proof We use the evaluations (2) and (4). Let k be fixed. Let

$$\begin{array}{lcl} P_k & = & \{d: d \mid x_k, d \mid x_t \text{ for some } x_t < x_k\}, \\ P_k^* & = & \{d: d || x_k, d || x_t \text{ for some } x_t < x_k\}. \end{array}$$

Let $M_k^* = \{d_1, d_2, \dots, d_m\}$ denote the set of maximal elements of P_k^* under the partial ordering induced by the unitary divisibility. It is evident that

$$egin{array}{lll} M_k^* &\subseteq& P_k^*\subseteq P_k, \ d\in P_k &\Rightarrow& D(d)\subseteq P_k, \ d\in P_k^* &\Rightarrow& U(d)\subseteq P_k^*, \end{array}$$

where D(d) is the set of divisors of d and U(d) is the set of unitary divisors of d. Since $d_1, d_2, \ldots, d_m \in P_k$, it can be seen that

$$P_k \supseteq \bigcup_{i=1}^m D(d_i). \tag{6}$$

By definition of the set $M_k^* = \{d_1, d_2, \ldots, d_m\}$, it can be seen that

$$P_k^* = \bigcup_{i=1}^m U(d_i). \tag{7}$$

It is well known that

$$\sum_{d|x_k} \phi(d) = \sum_{d||x_k} \phi^*(d) = x_k. \tag{8}$$

Therefore,

$$\sum_{\substack{d \mid x_k \\ d \not \models t \\ x_t < x_k}} \phi(d) = x_k - \sum_{d \in P_k} \phi(d),$$

$$\sum_{\substack{d \mid x_k \\ d \not \mid x_t \\ x_t < x_k}} \phi^*(d) = x_k - \sum_{d \in P_k^*} \phi^*(d).$$

Thus, by (2) and (4), it is enough to prove that

$$\sum_{d \in P_k} \phi(d) \ge \sum_{d \in P_k^*} \phi^*(d). \tag{9}$$

Consider the sum $\sum_{d \in P_k^*} \phi^*(d)$. By (7) and a method similar to the inclusion-exclusion principle,

$$\sum_{d \in P_{k}^{*}} \phi^{*}(d) = \sum_{d \in \bigcup_{i=1}^{m} U(d_{i})} \phi^{*}(d)$$

$$= \sum_{1 \leq i \leq m} \sum_{d||d_{i}} \phi^{*}(d) - \sum_{1 \leq i < j \leq m} \sum_{d||(d_{i}, d_{j})^{**}} \phi^{*}(d)$$

$$+ \dots + (-1)^{m+1} \sum_{d||(d_{1}, d_{2}, \dots, d_{m})^{**}} \phi^{*}(d). \tag{10}$$

Since the d_i 's are unitary divisors of x_k , the GCUD's in (10) are equal to the GCD's. Therefore application of (8) gives

$$\sum_{d \in P_k^*} \phi^*(d) = \sum_{1 \le i \le m} d_i - \sum_{1 \le i < j \le m} (d_i, d_j) + \dots + (-1)^{m+1} (d_1, d_2, \dots, d_m).$$
(11)

Next, consider the sum $\sum_{d \in P_k} \phi(d)$. By (6) and a method similar to the inclusion-exclusion principle,

$$\sum_{d \in P_{k}} \phi(d) \geq \sum_{d \in \bigcup_{i=1}^{m} D(d_{i})} \phi(d)
= \sum_{1 \leq i \leq m} \sum_{d \mid d_{i}} \phi(d) - \sum_{1 \leq i < j \leq m} \sum_{d \mid (d_{i}, d_{j})} \phi(d)
+ \dots + (-1)^{m+1} \sum_{d \mid (d_{1}, d_{2}, \dots, d_{m})} \phi(d).$$
(12)

Application of (8) shows that the right-hand side of (12) is equal to the right-hand side of (11). This shows that (9) holds. \Box

Theorem If S is both GCD-closed and GCUD-closed, then

$$\det(S) = \det(S^{**}) \Leftrightarrow (S) = (S^{**}).$$

Proof If $(S) = (S^{**})$, then $det(S) = det(S^{**})$. We assume that $(S) \neq (S^{**})$ and prove that $det(S^{**}) > det(S)$. By (9), it is enough to prove that

$$\sum_{d \in P_{\boldsymbol{k}}} \phi(d) > \sum_{d \in P_{\boldsymbol{k}}^*} \phi^*(d)$$

or

$$P_k \stackrel{\supset}{\neq} \bigcup_{i=1}^m D(d_i) \tag{13}$$

for some k = 1, 2, ..., n. Suppose that x_k is the smallest number such that

$$\exists x_t < x_k : (x_t, x_k)^{**} \neq (x_t, x_k). \tag{14}$$

If there are many such x_t 's, we take the smallest of them. We show that $(x_t, x_k) \in P_k$ but $(x_t, x_k) \notin \bigcup_{i=1}^m D(d_i)$. It is clear that $(x_t, x_k) \in P_k$. Further, suppose on the contrary that $(x_t, x_k) \in \bigcup_{i=1}^m D(d_i)$. Then there exists i such that

$$(x_t, x_k) \mid d_i. \tag{15}$$

By the definition of d_i , we have

$$d_i \| x_k, \ d_i \| x_r \quad \text{for some } x_r < x_k. \tag{16}$$

— 184 —

We show that $(x_t, x_k) = x_t$. If $(x_t, x_k) < x_t$, then, by minimality of x_k and x_t in (14),

$$egin{aligned} (x_t,x_k) &= ((x_t,x_k),x_t) = ((x_t,x_k),x_t)^{**}, \ (x_t,x_k) &= ((x_t,x_k),x_k) = ((x_t,x_k),x_k)^{**}. \end{aligned}$$

This implies that the common prime divisors of x_k and x_t must occur in the same power, which contradicts (14). Therefore $(x_t, x_k) = x_t$.

Now (15) and (16) can be written as

$$x_t \mid d_i || x_r, \ d_i || x_k, \ x_r < x_k.$$

Since $x_t \not| x_k$ (see (14)), we have $x_t \not| d_i$. Therefore

$$(x_t, x_r)^{**} = (x_t, d_i)^{**} < x_t = (x_t, x_r).$$

Thus $(x_t, x_r)^{**} \neq (x_t, x_r)$. This contradicts the minimality of x_k in (14). So we have proved that $(x_t, x_k) \notin \bigcup_{i=1}^m D(d_i)$ and further that (13) holds. \square

Example 2.1 Let $S_1 = \{2,6\}$ and $S_2 = \{1,2,8\}$. Then S_1 and S_2 are GCD-closed and GCUD-closed but not factor-closed. Further, $(S_1) = (S_1^{**})$ and $(S_2) \neq (S_2^{**})$. Note that $\det(S_1) = \det(S_1^{**}) = 8$ but $\det(S_2) = 6 < \det(S_2^{**}) = 7$.

Example 2.2 Let $S_1 = \{1,2\}$ and $S_2 = \{1,2,4\}$. Then S_1 and S_2 are factor-closed and therefore also GCD-closed and GCUD-closed. Further, $(S_1) = (S_1^{**})$ and $(S_2) \neq (S_2^{**})$. Note that $\det(S_1) = \det(S_1^{**}) = 1$ but $\det(S_2) = 2 < \det(S_2^{**}) = 3$.

3. Another unitary analogue

The semi-unitary greatest common divisor (SUGCD) of x_i and x_j is defined as the greatest unitary divisor of x_j which is a divisor of x_i . The SUGCD of x_i and x_j is denoted by $(x_i, x_j)^*$. The $n \times n$ matrix (S^*) whose i, j-entry is equal to $(x_i, x_j)^*$ is said to be the SUGCD matrix on S. It can be verified that

S is UD-closed \Rightarrow S is SUGCD-closed \Rightarrow S is GCUD-closed.

If S is GCD-closed, then

S is SUGCD-closed \Leftrightarrow S is GCUD-closed.

It is known [3, Remark 5.5] that if S is SUGCD-closed, then

$$\det(S^*) = \det(S^{**}).$$

Therefore, by Theorem 2.2, if S is both SUGCD-closed and GCD-closed, then

$$\det(S^*) \ge \det(S),\tag{17}$$

and the equality holds if and only if

$$(S^{**}) = (S). (18)$$

— 185 **—**

However, we feel that the last result is not satisfactory. One should find a characterization for the equality in (17) other than (18).

Remark The methods of this paper apply to regular arithmetical convolutions^[6] so that the unitary convolution U and the Dirichlet convolution D, respectively, could be replaced with regular arithmetical convolutions A and B with $A \leq B$, where \leq is the partial ordering by McCarthy ([4], [5,p.169]). For the sake of brevity we do not present the details here.

References:

- BESLIN S and LIGH S. Greatest common divisor matrices [J]. Linear Algebra Appl., 1989, 118: 69-76.
- [2] BESLIN S and LIGH S. Another generalisation of Smith's determinant [J]. Bull. Austral. Math. Soc., 1989, 40: 413-415.
- [3] HAUKKANEN P and SILLANPÄÄ J. Some analogues of Smith's determinant [J]. Linear Multilinear Algebra, 1996, 41: 233-244.
- [4] MCCARTHY P J. Regular arithmetical convolutions [J]. Portugal. Math., 1968, 27: 1-13.
- [5] MCCARTHY P J. Introduction to Arithmetical Functions [M]. Springer-Verlag, New York, 1986.
- [6] NARKIEWICZ W. On a class of arithmetical convolutions [J]. Colloq. Math., 1963, 10: 81-94.
- [7] SIVARAMAKRISHNAN R. Classical Theory of Arithmetic Functions [M]. Marcel Decker Inc., New York, 1989.
- [8] SMITH H J S. On the value of a certain arithmetical determinant [J]. Proc. London Math. Soc., 1875/76, 7: 208-212.