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Abstract: Let S = {z;,22,...,za} be a set of distinct positive integers. The n x n
matrix (S) whose i, j-entry is the greatest commion divisor (z;, z;) of z; and z; is called
the GCD matrix on S. A divisor d of z is said to be a unitary divisor of z if (d, z/d) = 1.
The greatest common unitary divisor (GCUD) matrix (S**) is defined analogously. We
show that if S is both GCD-closed and GCUD-closed, then det(S5**) > det(S), where
the equality holds if and only if (S**) = (S).
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1. Introduction

Let § = {z1,2,...,2,} be a set of distinct positive integers. The n x n matrix (S)
whose ¢, j-entry is the greatest common divisor (z;,z;) of z; and z; is called the GCD
matrix on 5§ (see [1]).

A divisor d of z is said to be a unitary divisor of z if (d,z/d) = 1. If d is a unitary
divisor of z, we write d||z. The greatest common unitary divisor of z; and z; is denoted
by (zi,2;)**. The n x n matrix ($**) whose i,j-entry is the greatest common unitary
divisor (z;,z;)*" is called the GCUD matrix on S (see [3]).

The set S is said to be factor-closed if it contains every divisor of any element of §,
and the set S is said to be GCD-closed if it contains the greatest common divisor of any
two elements of S. Unitary divisor -closed (UD-closed) sets and GCUD-closed sets are
defined analogously. It can be verified that

i) § is factor-closed = § is GCD-closed,

ii) S is factor-closed = § is UD-closed = § is GCUD-closed.

H.J.S.Smith!® showed that if S is factor-closed, then

det(S) = fI é(z), o (1)
k=1
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where ¢ is Euler’s totient function. Beslin and Lighm showed that if S is GCD-closed,
then :

det(5) =[] 3 #(d) | @)

k=1 djz,
dlg,
T <Tg

If S is factor-closed, then (2) reduces to (1).
It is known[®! that if S is UD-closed, then

det(57) = T[ ¢*(ze), (3)
k=1

where ¢~ is the unitary analogue of Euler’s totient function [7]. It is also known [3] that
if S is GCUD-closed, then

det(s™) = [ 3 #°(a). (4)

k=1 dljz;
difx,
T <ey

If § is UD-closed, then (4) reduces to (3).
Euler’s totient function ¢ and its unitary analogue ¢* are multiplicative functions such
that for all prime powers p* (> 1) ‘

¢(p*) = p*-p*7,
¢"(p") = p* -1
Thus ¢*(z) > ¢(z) for all positive integers z. If S is a factor-closed set, then (1) and (3)
hold and further
det(S™") > det(S). (5)

In this paper we show that if S is both GCD-closed and GCUD-closed, then (5) holds,
and the equality in (5) holds if and only if (§**) = (), see Section 2.

If 5 is factor-closed, then S is both GCD-closed and GCUD-closed. Therefore (5) for
factor-closed sets is a special case of our result. Note that there also exists an infinite
number of sets S which are both GCD-closed and GCUD-closed but which are not factor-
closed. For example, all sets of the form S, = {p,pq} and S, = {1,p,p’}, where p and
q are distinct primes, are both GCD-closed and GCUD-closed but are not factor-closed.
Here (51) = (S7*) and ($2) # (S57).

At the end of this paper we discuss briefly another unitary analogue of the GCD matrix
than the GCUD matrix, see Section 3.

2. The main results

Theorem 2.1 If S is both GCD-closed and GCUD-closed, then

det(5™") > det(S).
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Proof We use the evaluations (2) and (4). Let k be fixed. Let
P. = {d:d|zy,d|z for some z; < z}},
Py = {d:d||zk,d||z; for some z; < z;}.
Let My = {d;,d,,...,d,} denote the set of maximal elements of P} under the partial
ordering induced by the unitary divisibility. It is evident that
Mg C PgC P,
de P, = D(d)C P,
de P, = U(d)C P,

where D(d) is the set of divisors of d and U(d) is the set of unitary divisors of d. Since
di,ds,...,dm € P, it can be seen that

Pe 2 ) Did). (®)

=1
By definition of the set M} = {di,ds,...,d,.}, it can be seen that

P; = |J U(d). (7)
=1
It is well known that
Yo d(d) =) ¢7(d) = 2. (8)
d|zy d||=
Therefore,
doodd) = a2 — > ¢(d),
dlzk depk
dlf,
T <Tp
DO ooTd) = a- Y. ¢7(d).
dfjry dep;}
difz,
<k

Thus, by (2) and (4), it is enough to prove that

D od) > Y ¢7(d). (9)

deP; deP;

Consider the sum 2aep; ¢7(d). By (7) and a method similar to the inclusion-exclusion

principle,
> #7(d) Y 4

Il

dep; o delJ", U
= 2 2 E@- Y Y 49
1<i<m djjd; 1<i<i<m dl|(didy)**
4 (=1)m > ¢*(d). (10)

d”((il ,(12 ,,,,, d",)**
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Since the d;’s are unitary divisors of z;, the GCUD’s in (10) are equal to the GCD’s.
Therefore application of (8) gives

Yo#d) = > di— Y (did))
deP;} 1<i<m 1<i<jsm
$oot (=)™ (dy, da, . .., d). (11)

Next, consider the sum ;. p, #(d). By (6) and a method similar to the inclusion-exclusion
principle,

Yed > Y #d)

deP; delJ;~, D(d;)
= X YHd)- Y X ¢d)
1<i<m d|d; 1<i<i<m d|(d;dj)
Fob (CD™M Y ). (12)

d|(d1,d2,...,dm)

Application of (8) shows that the right-hand side of (12) is equal to the right-hand side of
(11). This shows that (9) holds. O

Theorem If S is both GCD-closed and GCUD-closed, then
det(5) = det(5™) < (5) = (™).

‘Proof If (§) = (5*), then det(S) = det(S5**). We assume that (§) # (S**) and prove
that det(5**) > det(.S). By (9), it is enough to prove that

2. #d) > D ¢*(d)

deP, deP;
or o
P i U D(d:) (13)
i=1
for some k = 1,2,...,n. Suppose that z; is the smallest number such that
Jzy < @ (@, 21)™" # (24, 21). (14)

If there are many such z,’s, we take the smallest of them. We show that (z;,z) € Pi but
(2¢,21) € Uiz D(d;). It is clear that (z;,z;) € P. Further, suppose on the contrary that
(2¢,zr) € Uiz D(d;). Then there exists i such that

(z¢,2x) | d;- (15)
By the definition of d;, we have
di||zk, dil]|z, for some z, < z. (16)
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We show that (z:,2x) = 2;. If (24, 2x) < 24, then, by minimality of z;, and z, in (14),

(mt,zk) = ((ztazk)vzt) = ((zt’zk)1zt)**’
(zhzk) = ((zt’zk)’zk) = ((zt’zk)’zk)**'

This implies that the common prime divisors of z) and z; must occur in the same power,
which contradicts (14). Therefore (z¢,z)) = z;.
Now (15) and (16) can be written as

z, | dillz,, di||zk, 2, < z4.
Since z¢ flzi (see (14)), we have z; f|d;. Therefore
(26,2 )" = (2¢,di)™" < 2 = (24, 2,).

Thus (z:,2.)™ # (z¢,2,). This contradicts the minimality of z; in (14). So we have
proved that (z¢,2x) ¢ U2, D(d;) and further that (13) holds. O

Example 2.1 Let §; = {2,6} and S; = {1,2,8}. Then S; and S, are GCD-closed and
GCUD-closed but not factor-closed. Further, (1) = (S1*) and (S;) # (S3*). Note that
det(S,) = det(S7*) = 8 but det(S;) = 6 < det(S3*) = 7.

Example 2.2 Let §; = {1,2} and 5; = {1,2,4}. Then S; and S, are factor-closed and
therefore also GCD-closed and GCUD-closed. Further, (S1) = (S7*) and (S3) # (5%%).
Note that det(S;) = det(S57*) = 1 but det(S52) = 2 < det(S3*) = 3.~

3. Another unitary analogue

The semi-unitary greatest common divisor (SUGCD) of z; and z; is defined as the
greatest unitary divisor of z; which is a divisor of z;. The SUGCD of z; and z; is denoted
by (zi,z;)*. The n X n matrix (5*) whose i, j-entry is equal to (z;,2;)* is said to be the
SUGCD matrix on S. It can be verified that

S is UD-closed :> S is SUGCD-closed = S is GCUD-closed.
If S is GCD-closed, then
S is SUGCD-closed <« S is GCUD-closed.

It is known [3, Remark 5.5] that if S is SUGCD-closed, then

det(S™) = det(S5™).
Therefore, by Theorem 2.2, if S is both SUGCD-closed and GCD-closed, then

det(5™) > det(S), » 1n
and the equality holds if and only if

(57%) = (5). (18)
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However, we feel that the last result is not satisfactory. One should find a characterization
for the equality in (17) other than (18).

Remark The methods of this paper apply to regular arithmetical convolutions!® so
that the unitary convolution U and the Dirichlet convolution D, respectively, could be
replaced with regular arithmetical convolutions A and B with A < B, where < is the
partial ordering by McCarthy ([4], [5,p.169]). For the sake of brevity we do not present
the details here.
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