Several Properties of Idempoent and Nilpotent Matrices *

JIA Li-xin (Dept. of Basi. Sci, Elec. and Tech. Inst., Zhengzhou 450004)

Abstract: Using a limit process, it is proved in this paper that the adjoint matrix of an idempotent matrix is idempotent and the adjoint matrix of a nilpotent matrix is also nilpotent. The results are richer than that in [1].

Key words: idempotent matrix; nilpotent matrix.

Classification: AMS(1991) 15A57/CLC O151.21

Document code: A Article ID: 1000-341X(2000)02-0194-03

It is known that for an $n \times n$ complex matrix ,denote by $A \in M_n(\mathbb{C})$, if $A^m = A$, $m \ge 2$ is a positive integer, then A is said to be idempotent. Moreover, if $A^m = 0$, $m \ge 1$ then A is said to be nilpotent. In [1], the authors proved that for an $n \times n$ real matrix A, if $A^2 = A$, then $(adjA)^2 = adjA$, where, adjA denotes the adjoint matrix of A, but the proof is very sophisticated. In this paper, we prove that this result holds for general idempotent matrix, furthermore, a similar conclusion for nilpotent matrix is also obtained. The proof in this paper is simple and elementary.

Definition $1^{[2]}$ Let $A = [a_{ij}] \in M_n(C)$, A^T denotes the transpose of A, det A denotes the determinant of A and A_{ij} is the algebraic cofactor of in det A, then the matrix

$$\mathrm{adj} A = [A_{ij}]^T = \left[egin{array}{cccc} A_{11} & A_{21} & \cdots & A_{n1} \ A_{12} & A_{22} & \cdots & A_{n2} \ \cdots & \cdots & \cdots & \cdots \ A_{1n} & A_{2n} & \cdots & A_{nn} \end{array}
ight]$$

is called the adjoint matrix of A.

Theorem 1 Let $A \in M_n(C)$, if $A^m = A$ for a positive integer $m \geq 2$, then $(adjA)^m = adjA$.

Proof Concerning the Jordan form of A, one can easily see that if $A^m = A$, $m \ge 2$, then A is diagonalizable, that is, there exists a nonsingular matrix $T \in M_n(C)$ such that

$$A = T \operatorname{diag}[\lambda_1, \lambda_2, \cdots, \lambda_n] T^{-1}$$

*Received date: 1997-10-17

Biography: JIA Li-xin (1973-), male, Ph.D.

where, $\lambda_i (1 \le i \le n)$ satisfy the equation $\lambda^m = \lambda$.

(i) rank A = n. In this case, $\lambda_i \neq 0, i = 1, \dots, n$. By the equality,

$$A \cdot \operatorname{adj} A = \operatorname{adj} A \cdot A = \det A \cdot I_n.$$

We have $\operatorname{adj} A = \det A \cdot A^{-1} = \lambda_1 \lambda_2 \cdots \lambda_n T \operatorname{diag}[\lambda_1^{-1}, \cdots, \lambda_n^{-1}] T^{-1}$. Observe that $\lambda_i (1 \leq i \leq n)$ satisfy the equation $\lambda^{m-1} = 1$, we can get $(\operatorname{adj} A)^{m-1} = I_n$, so that $(\operatorname{adj} A)^m = \operatorname{adj} A$.

- (ii) rank $A \le n-2$. All cofactors of order n-1 in det A are zeros, that is $A_{ij} = 0, 1 \le i, j \le n$, i.e. adj A = 0, which implies $(adj A)^m = adj A$.
- (iii) rank A=n-1. Without loss of generality, we can assume $\lambda_i \neq 0, (1 \leq i \leq n-1)$ $\lambda_n=0$. Let $\varepsilon \neq 0$ and $A_{\varepsilon}=A+\varepsilon T \operatorname{diag}[0,0,\cdots,0,1]T^{-1}=T\operatorname{diag}[\lambda_1,\lambda_2,\cdots,\lambda_{n-1},\varepsilon]T^{-1}$, then we have

$$\begin{aligned} \operatorname{adj} & A_{\varepsilon} = \det A_{\varepsilon} \dot{A}_{\varepsilon}^{-1} \\ & = \lambda_{1} \lambda_{2} \cdots \lambda_{n-1} \varepsilon T \operatorname{diag}[\lambda_{1}^{-1}, \cdots, \lambda_{n-1}^{-1}, \varepsilon^{-1}] T^{-1} \\ & = T \operatorname{diag}[\lambda_{2} \cdots \lambda_{n-1} \varepsilon, \cdots, \lambda_{1} \cdots \lambda_{n-2} \varepsilon, \cdots, \lambda_{1} \cdots \lambda_{n-1}] T^{-1}, \end{aligned}$$

so that

$$\operatorname{adj} A = \lim_{\epsilon \to 0} \operatorname{adj} A_{\epsilon} = T \operatorname{diag}[0, \cdots, o, \lambda_1 \cdots \lambda_{n-1}] T^{-1}.$$

Since $\lambda_i (1 \le i \le n-1)$ are zeros of the equation $\lambda^m = \lambda, (\text{adj}A)^m = \text{adj}A$ follows. This completes the proof.

Corollary 1 If $A \in M_n(C)$ is idempotent and $A = T \operatorname{diag}[\lambda_1, \lambda_2, \dots, \lambda_n] T^{-1}$, then

$$\operatorname{adj} A = T \operatorname{diag} [\prod_{j \neq 1} \lambda_j, \prod_{j \neq 2} \lambda_j, \cdots, \prod_{j \neq n} \lambda_j] T^{-1}.$$

Especially, if $A^2 = A$ and rank A = n - 1, we have $A + \text{adj}A = I_n$.

Proof An immediate consequence of the proof of theorem 1 and the fact that $A^2 = A$ implies the eigenvalues of A are either 1 or 0.

The following theorem is devoted to the nilpotent matrices.

Theorem 2 Let $A \in M_n(C)$. If $A^m = 0$ for a positive integer m, then $(adjA)^2 = 0$.

Proof According to the Jordan form of A, all eigenvalues of A are zeros and rank $A \le n-1$. Similarly to the proof of Theorem 1(ii), we can prove that adjA = 0 and $(adjA)^2 = 0$ if $rank A \le n-2$. so it suffices to give a proof for rank A = n-1. In this case, A has the following form:

let

 $\varepsilon \neq 0$. A direct computation leads to

$$A_{\epsilon}^{-1} = T \begin{bmatrix} \frac{1}{\epsilon} & -\frac{1}{\epsilon^2} & \cdots & \cdots & (-1)^{n-1} \frac{1}{\epsilon^n} \\ & \frac{1}{\epsilon} & \ddots & & \vdots \\ & & \ddots & \ddots & \vdots \\ & & & \ddots & \ddots & \vdots \\ & & & & \ddots & -\frac{1}{\epsilon^2} \\ & & & \frac{1}{\epsilon} \end{bmatrix} T^{-1}$$

Consequently,

$$\mathrm{adj}A_{\epsilon} = \det A_{\epsilon} \cdot A_{\epsilon}^{-1} = \epsilon^n \cdot A_{\epsilon}^{-1}$$
 $0 \quad 0 \quad (-1)^{n-1}$ $0 \quad \cdots \quad \vdots \quad T^{-1}.$ T^{-1} .

In $T^{-1} \cdot \operatorname{adj} A \cdot T$, only (1, n) element is $(-1)^{n-1}$, and the other elements are all zeros, so $(\operatorname{adj} A)^2 = 0$. This proves the theorem.

References:

- JIN B K, HEE S K and SEUNG D K. An adjoint matrix of a real idempotent matrix [J]. J. of Math. Res. Exp., 1997, 17(3): 335-339.
- [2] GANTMACHER F R. The Throry of Matrices [M]. Chelsea Publishing Comany, 1959, 1, New YorK.

幂等阵和幂零阵的伴随阵的若干性质

贾 利 新

(电子技术学院基础部数学教研室, 郑州 450004)

摘 要: 本文利用极限过程的方法,证明了幂等阵和幂零阵的伴随矩阵分别是幂等阵和 幂零阵,所得到的结论比 [1] 丰富得多.

— 196 **—**