A New Demonstration of a Theorem for Sublinear Approximations *

LIN Gui-hua, FENG En-min (Dept. of Appl. Math., Dalian University of Technology, 116024)

Abstract: The demonstration of a theorem for sublinear approximations, due to Demyanov and Rubinov, is modified as a new one in this paper.

Key words: sublinear; superlinear; approximation.

Classification: AMS(1991) 90C30,90C99/CLC O221.2

Document code: A **Article ID:** 1000-341X(2000)02-0211-02

In the study of extreme problems, it is sometimes more convenient to consider an approximation that is not an upper (lower) convex approximation but a majorant (minority) of the function itself. Recently, Demyanov and Rubinov gave an exact majorant of a positively homogeneous function at a given point which is stated as follows.

Theorem ([1], pp 169) Let a function $h: \mathbb{R}^n \to \mathbb{R}$ be positively homogeneous of first degree, $z \in \mathbb{R}^n$ and $z \neq 0$. Then the following conditions are equivalent:

- (a) There exists a sublinear function $p(\cdot)$ such that $p(x) \ge h(x)$ $(\forall x)$ and p(z) = h(z).
- (b) There exists a constant k > 0 such that $h(x) h(z) \le k||x z||(\forall x)$ holds.

In the proof of the part $(b) \Rightarrow (a)$, $p(x) = \frac{||x||}{||z||} h(z) + \frac{k}{||z||} |||x|| ||x - ||x|| |z||$. In fact, the above function is not sublinear. For example, set $e_1 = (1, 0, 0, \dots, 0)^T$, $e_2 = (0, 1, 0, \dots, 0)^T \in \mathbb{R}^n$ and consider the case in which $h(\cdot) = -||\cdot||$ and $z = e_1$. Then h is positively homogeneous and the k in (b) can be taken as 1. It is easily to prove that $p(e_1 + e_2) > p(e_1) + p(e_2)$, i.e., $p(\cdot)$ is not a sublinear function. We now give a modified demonstration of the theorem.

Proof of $(b) \Rightarrow (a)$: Assume that (b) holds.

(1) If $h(z) \ge 0$, then the function g(x) = h(z) + k||x-z|| is convex and for any $x \in \mathbb{R}^n$, one has $g(x) \ge 0$, $g(x) \ge h(x)$, g(z) = h(z).

Definite $p(x) = \inf_{s>0} \sup_{t\in co(s,1/s)} \frac{||x||}{||z||} g\left(\frac{t||z||}{||x||}x\right)$ for $x\neq 0$ and p(0)=0. Then p is positively homogeneous and p(z)=h(z),

$$p(x) \geq rac{\|x\|}{\|z\|} g\Big(rac{\|z\|}{\|x\|}x\Big) \geq rac{\|x\|}{\|z\|} h\Big(rac{\|z\|}{\|x\|}x\Big) = h(x).$$

^{*}Received date: 1997-08-04

Biography: LIN Gui-hua (1967-), male, born in Cangzhou county, Hebei province. Currently a lecturer at Dalian University of Technology.

In addition, p satisfies subadditivity. In fact, if x + y = 0, then we have

$$p(x) + p(y) \ge \frac{\|x\|}{\|z\|} g\Big(\frac{\|z\|}{\|x\|} x\Big) + \frac{\|y\|}{\|z\|} g\Big(\frac{\|z\|}{\|y\|} y\Big) \ge 0 = p(x+y)$$

If $x + y \neq 0$, then

$$\begin{split} & \frac{||x+y||}{||z||} g\left(\frac{t||z||}{||x+y||}(x+y)\right) \\ & \leq \frac{||x||+||y||}{||z||} g\left(\frac{||x||}{||x||+||y||} \frac{||x||+||y||}{||x+y||} \frac{t||z||}{||x||} x + \frac{||y||}{||x||+||y||} \frac{t||z||}{||x+y||} \frac{y}{||y||} y\right) \\ & \leq \frac{||x||+||y||}{||z||} \left(\frac{||x||}{||x||+||y||} \frac{t||z||}{||x+y||} \frac{t||z||}{||x||} x\right) + \frac{||y||}{||x||+||y||} g\left(\frac{||x||+||y||}{||x+y||} \frac{t||z||}{||y||} y\right) \right) \\ & \leq \sup_{r \in \operatorname{co}(s_1,1/s_1)} \frac{||x||}{||z||} g\left(\frac{r||z||}{||x||} x\right) + \sup_{r \in \operatorname{co}(s_1,1/s_1)} \frac{||y||}{||z||} g\left(\frac{r||z||}{||y||} y\right) := I_{s_1}, \end{split}$$

where $s>0, t\in \text{co}(s,1/s), s_1=\frac{||x||+||y||}{||x+y||}s$. Since t is arbitrary, we have $p(x+y)\leq \sup_{t\in \text{co}(s,1/s)}\frac{||x+y||}{||x||}g\left(\frac{t||x||}{||x+y||}(x+y)\right)\leq I_{s_1}$. Therefore, one obtains $p(x+y)\leq \inf_{s>0}I_{s_1}=\inf_{s_1>0}I_{s_1}=p(x)+p(y)$. It is shown that p satisfies (a).

(2) Suppose that h(z) < 0. Since $z = (z_1, z_2, \dots, z_n)^T \neq 0$, we take some $z_i \neq 0$ and definite $h_1(x) = h(x) - \frac{x_i h(z)}{z_i}, \forall x = (x_1, x_2, \dots, x_n)^T \in \mathbb{R}^n$. Then h_1 is positively homogeneous, $h_1(z) = 0$ and for any $x \in \mathbb{R}^n$, $h_1(x) - h_1(z) \leq (k + |h(z)/z_i|)||x - z||$. By the conclusion of (1), there exists a sublinear function p_1 such that $h_1(x) \leq p_1(x)$ and $p_1(z) = h_1(z)$. Then the function $p(x) = p_1(x) + x_i h(z)/z_i$ is also sublinear and satisfies $h(z) = p(z), h(x) \leq p(x), \forall x \in \mathbb{R}^n$. This implies that (a) holds. \square

Corollary Assume that $h: \mathbb{R}^n \to \mathbb{R}$ is Lipschtzian and positively homogeneous, $z \in \mathbb{R}^n$ and $z \neq 0$. Then there exist a sublinear function p and a superlinear function q such that $q(x) \leq h(x) \leq p(x) (\forall x \in \mathbb{R}^n)$ and q(z) = p(z) = h(z).

References:

- [1] DEMYANOV V F and RUBINOV A M. Constructive Nonsmooth Analysis [M]. Peter Lang GmbH, Frankfurt am Main, 1995.
- [2] DEMYANOV V F. and RUBINOV A M. Quasidifferentiable Calculus [M]. Optimization Solfware, New York, 1986.
- [3] ROCKAFELLAR R T. Convex Analysis [M]. Princeton University Press, Princeton, 1970/72.

关于一个次线性逼近定理的新证法

林 贵 华, 冯 恩 民 (大连理工大学应用数学系, 116024)

摘 要: Demyanov 和 Rubinov 在 [1] 中给出了一个次线性逼近定理。本文对该定理的证明进行了修正。