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Abstract: It is known that the product of two nilpotent subgroups of a finite group is
not necessarily nilpotent. In this paper , we study the influence of the Engel condition on
the product of two nilpotent subgroups. Our results generalize some well-known results.
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1. Basic results and Notation

We shall use the following notation for commutators:

[z,9] = 27y ey
(21,22, -, 2,] = [[21, yZn_1),24] (n > 3),
[z,09] = 2,
[2,n9] = [[2,n-19],] (n>1)

[®,ny] = 1is called n-Engel condition. The rest of the notation is standard(see[4]). In this
paper, all groups considered are finite.
We shall need the following results:

Lemma 1 Assume that G = AB, that A and B are nilpotent subgroups of G, [A,B] = 1,
then G is nilpotent.

Proof By [2, Theorem 2. 5, P. 122], it is obvious.

Lemma 2 Assume that G = AB, A is a normal nilpotent subgroup of G, B is a nilpotent
subgroup of G, (|Al,|B|) = 1, if for each element z in A and each element y in B there is
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a positive integer n such that [z,,y] = 1, then G is nilpotent.

Proof We may assume that n > 2. Let @ = [2,,—2y] . Then [a,y,y] = 1. Since
[(v7)%y,9] = [a,9,y] = 1, we have y(y~')*y = (y7')%yy, y(y')* = (v7'), that is
[(y7*)%, 9] = 1. Thus o((y™*)*y) | o(y), o(y) | |B|. Since A<G, so that (y~*)*y = [a,y] € A.
By hypothesis, (| 4 |,| B |) = 1, we have [a,y] = [2,n—1¥] = 1. Thus a simple induction
on n, we have [z,y] = 1. Lemma 1 implies that G is nilpotent.

Remark IfG = AB, A is a normal nilpotent subgroup of G, B is a nilpotent subgroup
of G, (| A|,| B |) =1, then G is not necessarily nilpotent. As confirmed by S3, the
symmetric group of degree 3.

2. Main results
We prove the following theorems:

Theorem 1 Assume that G = AB, that A and B are nilpotent subgroups of G, and that
(| A|,| B|) = 1. If for each element x in A and each element y in B there is a positive
integer n such that [z,,y] = 1, then G is nilpotent.

Proof Let M be an arbitrary maximal subgroup of G. Since G is solvable, it follows
that| G : M |= p™ for some prime p. Since (| A |,| B |) = 1, we can assume that p does not
divide, say, | B |. LetM; be a p’-Hall subgroup of M. By =-sylow Theorem [4, Theorem
4.1, P. 231], we have B < MY for some z in G. Since M has the same properties as M, we
can replace M by M? and so we can assume without loss of generality that B < M. Since
G = AB, it follows that M = B(AN M). Clearly, B and AN M are nilpotent subgroups
of M, (| B |,] AnM |) = 1. By hypothesis, for each element z in AN M and each
element y in B there is a positive integer n such that [z,,y] = 1. By induction on| G |,
M is nilpotent. If G is not nilpotent, then G is a minimal nonnilpotent group. By Ito
Theorem [4, Theorem 5.2, P. 281], G = PQ, where P is normal in G , and P is a sylow
p-subgroup of G, @ is non-normal cyclic sylow g-subgroup of G, p # q. We can assume
that P = A and Q = B, so that A aG. Due to each element z in A and each element y in
B there is a positive integer n such that [z,, y] = 1, Lemma 2 implies that G is nilpotent,
a contradiction. This is impossible as G is minimal nonnilpotent group. This completes
the proof of the theorem.

Theorem 2 Assume that G = AB, that A is a normal nilpotent subgroup of G, and that
B is a nilpotent subgroup of G. If for each element z in A and each element y in B there
is a positive integer n such that [z,,y] = 1, then G is nilpotent.

Proof. Let p be an arbitrary prime dividing | G |. We consider the following cases:

Case 1. If p|| Al,p || B |. Then, by [2, Theorem 27(3), P. 217], there exist a sylow
p-subgroup P; of A and a sylow p-subgroup P, of B such that P, P, is a sylow p-subgroup of
G. Let P = P, P,, we show that P<G. Since B is nilpotent, there exist a p’-Hall subgroup
B, of B such that B = P,B,. If G = P B, thenG = PB;. By hypothesis , Pychar4 « G,
hence P, «G. Since B is nilpotent, it follows that P;<B. Hence P<G. If G = P, A, assume
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that A, is a p’-Hall subgroup of A, then AjcharA «G. P,A; < G, Lemma 2 implies that
P, A, is nilpotent, thus P = P; P, «G. Now we can assume that P; B and P; A are proper
subgroups of G. By induction on | G |, P, B and P,A are nilpotent. Hence P « P, B and
P a PyA. Since G = AB, it follows that P 1 G.

Case 2. If p || A|, but pt | B |. Let P be a sylow p-subgroup of A. Then P is also a

sylow p-subgroup of G. By hypothesis, A <G, A is a nilpotent subgroup, it follows that
PcharA <G, hence P« G.

Case 3. If p|| B |, but pt | A |, Let P be sylow p-subgroup of B. Then P is also a sylow
p-subgroup of G. By hypothesis, 4 <G, so that AP = PA. Lemma 2 implies that AP is
nilpotent . Hence P 4« AP. By hypothesis, B is nilpotent. Hence P « B. Since G = AB, it
follows that P « G. Since p is an arbitrary prime dividing | G |, P is a sylow p-subgroup
of G, we can obtain P «G. then G is nilpotent. This completes the proof of the theorem.

Theorem 3 Assume that N « G, N and G/N are nilpotent groups. If for each element
z in N and each element y in G, there is a positive integer n such that [z,ny] = 1, then
G is nilpotent.

Proof We first prove that there is a nilpotent subgroup A of G such that G = NA. Let
F={A|ACG,G= NA}. Clearly, G € F, then F is a nonempty set. Now let A be a
minimal element in the set F, we show that A is nilpotent. Assume that NN A ¢ $(4)
(Frattini subgroup of A), there exists a maximal subgroup B of A4 such that N N A Z B.
Since NNA<A, we have A = (NNA)B. Since G = NA = N(NNA)B = NB, then B € F,
a contradition. Hence NN A C &(A). Since G = NA, so that G/N ~ A/N n A. But
A/NNA~(A/NNA)/(2(A)/NNA),then G/N ~ (A/NNA)/(2(A)/NNA)~ A/3(A).
This implies that G/N ~ A/®(A). G/N is nilpotent implies that A/®(A) is nilpotent.
Thus A is nilpotent. By hypothesis, G = NA, N and A are nilpotent subgroups of G, so
for each element z in N and each element y in A there is a positive integer n such that
[#,ny] = 1. Theorem 2 implies that G is nilpotent.

Theorem 4 Assume that G is a finite group that z is an arbitrary element of order p or
order 2*(p = 2), and that y is an arbitrary p'-element of G. If there is positive integer n
such that [z,,ylis a p’-element, then G is p-nilpotent.

Proof Suppose that the consequence is false and let G be a counter-example of the
smallest order. Then G is not p-nilpotent group. But each of whose proper subgroup
of G is p-nilpotent, by Ito Theorem [4, theorem 5.2, P. 281], G = PQ, exp(P) = por
22. Letz € P,y € Q. By hypothesis, there is a positive integer n such that [z,,y] is a
p'-element of G. Since P « G, we have that [z,,y] € P, it implies that [z,ny] = 1. By
Lemma 2, G is p-nilpotent, a contradiction. This is impossible as G is a counter-example
of the smallest order. This completes the proof of the theorem.

Our theorem may be considered as a generalization of the following well-known result:
Theorem 5 Assume that G is finite group. If each element of G of order p or order

2

2°(p = 2) lies in Z(G), then G is p-nilpotent [see 4, Theorem 5.5, P. 435].
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Theorem 6 Let z be an arbitrary element of G of prime order or order 2%, y be an
arbitrary element of G of prime power order, (o(z),0(y)) = 1, if there is a positive integer
n such that [z, y] = 1, then G is nilpotent.

Proof By Theorem 4, it is obvious.
As an immediate consequence of Theorem 6, we have the following well-known result:

Theorem 7 Let z and y be arbitrary element of G, if there is a positive integer n such
that [z,,y] = 1, then G is nilpotent. [see 4, Theorem 6. 13, P. 447]

Theorem 8 Assume that G is finite group, that P is an arbitrary p-subgroup of G, that
z is an arbitrary element of P of order p or order 22 (p = 2), and that y is an arbitrary
p'-element of Ng(P). If there is a positive integer n such that [z,,y] is a p’-element of G,
then G is p-nilpotent.

Proof Let y be an arbitrary p'-element of Ng(P). We can consider the group P(y).
Let = be an arbitrary element of P(y) of order p or order 2°. Clearly, z € P, since
P(y) < Ng(P). Thus an arbitrary p'-element in P(y) that it is an arbitrary p’-element in
Ng(P). We can assume that y' is an arbitrary p’-element in Ng(P). By hypothesis, there
is a positive integer n such that [z, ,y'] is a p’-element. Theorem 4 implies that P < y' > is
p-nilpotent. It follows that (y') < P(y'). Hence P(y') = P x (y'), Ng(P)/Cg(P) is p-group.
By Frobenius’ Theorem, G is p-nilpotent. This completes the proof of the Theorem.

Our Theorem 8 may be considered as a generalization of Theorem 10.24 in [1] [see 1,
Theorem 10.24, P. 124].
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