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Abstract: The problems of best reconstruction of multivariate functions of the Riesz
potential spaces from their values on a given mesh are considered, and the exact results
of some classes of L,(R") (and L(Q")) defined by the Riesz potential are obtained.
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1. Introduction

Let X,Y and W be Banach spaces, V an operator from W to Y, M a subset of W,
and P a set of operators from Y to X. In addition, let A be a given operator with domain
of definition D(A) C W, M C D(A), and range R(A) C X. We consider the following
quantities

Eg(A,M,V,X)=: inf sup ||Az — TVez||x, (1.1)
Te® zeMm
E(M,M,X)=: sup inf ||z - y|x. (1.2)
zeM VEM

When & = &, in (1.1) is the set of all operators from Y to X, we simply write E(-,,-,")
instead of Eg, (-, -,,")-.
For any real a > 0, we denote the Riesz potential space of all real functions on R™ by

L§(R™) =: {f € Ly(R") N C(R") : |]2}|* (=) € Lo(R™)}. (1.3)

Here ||z|| is the Euclidean norm of the vector z = (z1,---,%z,) € R", and f the Fourier
transform of the function f in L(R"™), namely, when f € L,(R") N Ly(R"™),

Ff@) = fz) = @n) % [ f(etear,
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while ¢ - z is the Euclidean inner product of the vectors ¢ and z in R". If f € L§(R"),
we denote the function D*f defined by its Fourier transform D*f(z) = ||z||*f(z). When
a = 2k is even, A* = (—1)kD?* is the k-iterate of the usual Laplace operator A (see [6]).
Set

Wi (R™) = {f € L5(R™) < || - 1I°FO)llza(mmy < 13, (1.4)

1/2
where [lg(|,() =: {fI |g(a:)|2dm} / is the Ly-norm on the set I C R™. Let p,(||z]]),
a > 0, be the function from R™ to R given by

||2|]*=™, fa—n#0,2,4,---,

(lell) = C(n.a 15
ealll=l) ( ){ |z||*~"1og ||z||, ifa—n=0,2,4,---, (1)

where C(n,a) is a constant which depends only on a and n and is chosen so that the
generalized Fourier transform (i.e. in the sense of distribution) $.(£) = (27)~"/?||¢||~.
Denote by S, 2 the space of all real functions f defined by

=0, (1.6)
Lz(Ru)

Nhgo-][ > apall-—vl) - f

livfjl<N

where {¢,; v € Z"} is a subset of R. When a = 2k is even, S, 2 is the space of k-
polyharmonic cardinal splines (see [6]).

We are interested in the exact values of the quantities E(DY,W3(R"), V,Ly(R"))
and E(W$(R™),Sp,2, L2(R™)) for 0 < v < a < f. Here the operator V is defined by
Vf={f(v): v € 2Z"}. When n = 1, Sun and Lil'¥ gave the exact results for the case
a=7r€ Zy and ¥y =0,1,---,r. Further, Chen, Li and Micchillil?! extended the results of
[12] to the case a > 1. Recently, Yan!!¥ extended these results to the case a > % On the
multivariate case, when a = 2k is even, 2k > n+ 1,4 = 0,2,---,2k, and 8 = 2m € Z,,
the author in [4] gave some exact results. In this paper, we continue to extend these to
the casea > Zand 0 <y < a < 6.

2. Some results on a periodic class of multivariate functions

In this section, we give some results on a periodic class. Because their proofs are
completely similar to those of [4], we omit their details.
For a > 0, the multiple trigonometric series

et eix/a:
n
2 T =
veZn—{0}
is the Fourier series of an integrable function D,(z) on Q", Q™ = {z = (21, " ,2,)

ER": —w<z;<mj=12,---,n}. For 0 < a < n, we see this fact from [11, Chapter
VII}; for a > %, it is easy to verify that D, € Ly(Q™) C L1(Q"). For 1 < p < +00, let

I3 Q") ={c+Da*d: cE R € LP(Qn),/Qn é(t)dt = 0},
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and set
W (Q™) = {c+ Dax ¢ € L2(Q™) : 1¢llL, o) < 1}-
Hence D, * ¢ denote the convolution of D, and ¢ defined by

Das(2) = oz [ Dale— (0t

For f =c+ Do*xdp e L (Q"), we write D“f = ¢. For N € Z,, we denote by Vn f
the information of f € C(Q") defined by Vnvf = {f(}) : v € On}. Here Oy =
{(v1,---,vn)€2": =N <v; < N,j=1,2,---,n}.

In this section, we obtain

Theorem 1 Let § > a > . Then
BW5(Q"), 53, LaQ™) = swp llswaaf = flliaem = 7=
fews(Qn)
Here §f, =: span{l, Dg(z + 4F) — Dg(z) : v € Oy — {0}} and sy sof in S3* is the
interpolation function which interpolates f at points {4F : v € Op}.

Theorem 2 Let a > § and a > 5 > 0. Then

E(D",W3(Q™), V., L2(Q™)) = SUP e e gn) 1DV SN ,2af = fliLa(om)
= sup{[|D" fll,(@~) : VNf=0,f € Wg(Q")} = 7o,
where Vy f = 0 means that f(4F) = 0 for all v € Oy.

Remark When a = 2k, (2k > n+ 1), 8 = 2m and 4y = 2s are even, Theorem 1 and
Theorem 2 have been obta.med by the author (4. As in [4], the proofs of Theorem 1 and
Theorem 2 need the following lemmas.

Lemma 1 For 8 > n, set

2N -v)z

1 1 A1
O = G BN o g T =P

VEDN—{O} ]EZ"

where A, = Y .czn [|2JN — v||™#,v € Oy — {0}. Then,
(i) Ls(%F) = bo;, 7 € On, where 0o; is the Kronecker delta,
(ii) Lp(z) = (ﬁﬁ + WZ.@N d, Dp(z + %),

where d, =: (2_I}I)7 2 ucan\{0} A7le”N v € Oy, satisfying VEED:N d, = 0, namely, £a(z) is
the fundamental function of interpolation for the function set S f,
For # > n, and a bounded function f, we define the interpolation operator s N, by

snpf(z) = E f(N>lg<a: - %)

VEDN
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Lemma 2 Let a > ’2—‘ Then
|1D%f — D*(sn2a )2, qny = 1D FliZ,qm) = |1 D*(sn2af 12,4 (Qn)s

for all f € LE(Q™).

Remark When a = 2k is even and 2k > n + 1, Lemma 2 may be seen in [4], but there
the power 2 was missed.

Lemma 3 Let a > 2 and 0 <y < a. Then

|3

a o 1—%
1D fllzam) < ID* Y igm Il Gomys

for all f € L$(Q™).

Lemma 4 Fora > % and 0 <y < a, set

03

D(D", W5(Q™), Vv, L2(Q™) = sup{lID" fllz,m : f € W5(Q"), Vwf =0}

Then, we have
1

Ne=

D(DY, Ws(Q™), Vv, L2(Q™)) =

3. Some results on a class of multivariate functions defined on R"

Let o(R") and ¢'(R") denote the Schwartz space of rapidly desreasing functions and
its dual, the space of tempered distributions. To state our results, we need the cardinal
interpolation of the radical basis function @a(||z||). As in [1], if @ > n, then it is easy
to verify that ¢.(||z]|) is admissible of order m, where we have put a = m + n — u for
p €[0,1) and m € Z. (see definition 4 in [1] for the sense of admissible). Therefore, from
[1], we have

Lemma 5 For a > n, there exists a cardinal function xq(z) defined by

1 @a(t)eit“’
Xa\Z) = =~ dt 3.1
()= Gy Jan Soegn Bult + 220 ®1)
such that
(1) Xa(z) has the representation
Xa(z) = Z cvalllz = vll) (3.2)

veZn

which the right series is an absolutely convergent sum;
(2) Xalj) = b0 for all j € Z7;
(3) Xal2) € C(R™) and xa(z) = O(||2}|7>7") as |jz|| — oco.
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Lemma 5 is a corollary of Theorem 6, 10 and 11 of [1]. For a > n,0 < ¥ < @, and a

locally bounded function f satisfying | f(z)| = O(||z||") as ||z]] — oo, set

(Saf)(@) = D f(¥)xalz — ),

veEZ"

where the right series of (3.3) is an absolutely convergent sum on R".
In this section, we obtain

Theorem 3 Let a > 3,0 <y < a. Then, we have
E(D",W3(R"),V, L2(R")) = sup{|| D fllz,(re) : V=0, f € W(R")}
= supsewe(re) 107 — D7S2afllL,(Rm) = o

Theorem 4 Let 8 > a > 5 and § > n. Then, we have

E(W3(R™), Sp2, L2(R™)) =  sup  |If - S2af||L2(R") =
fewy(R)

To prove Theorem 3 and 4, we first give the following lemmas.

Lemma 6 Let a > v > 0. Then the inequality
1D fllza(mny < 1D FIEL S I oy

holds for any f € LY (R”)

(3.3)

(3.4)

(3.5)

(3.6)

The proof of Lemma 6 is similar to that of Lemma 7 of [4] for the case a = 2k, v = 2s,

and its detail is omitted.

Lemma 7(81 Schwartz space p(R"™) is dense in L§(R™).

Lemma 8 Let f € L§(R") for « > 3. Then f belongs to L;(R™) and hence the function

f is uniformly continuous and bounded on R™.

Proof Since f € L§(R™), then (1 + ||:c||°')f(:c) € Ly(R™). Hence, note that _——1+|Ila:ll° €

Ly(R™) for a > 3, we have flz) = ﬁrlﬁnz (1 4+ ||2]|*)f(z) € L(R™).
Lemma 9 Ifa > % and f € L§(R"), then Sa.f € L5(R").

Proof As in [7], the proof is divided into two steps.
(1) Let f € p(R™). Recall that

S2af(€) = (27)"2U(£)R2a(£),

where, in view of Poisson formula

U€) = @r)™2 3 fG)e ¢ = Y (€ - 2mf).

jezn jezn
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We now prove that

[ a+lamro©sa@©resc [ arighifore e
R» R®

where the constant C' is independent of f.
Let a; be the maximum of (1 + ||€]|?)™*(1 + [|€ — 2j7]|?)* - |X2a(& — 2j7)|2, for € in Q™,
and note that |§24(£)| < ao = 1, for £ in Q™. Since a; = O(||7]|~2*), for large ||j||, we may

write
Jrn (L ENP)* U (€)X (€)1 dE
= Tiezn Jor 0O+ I - 257 R20(¢ - 2i7)/? &6 (39)

< (Ziezn a3) JouL+ IEPIITOF d€ = A fon (L + PO de,

where we have put A = 3>, 7. a;.
Observe that for £ in Q" we may write

- 2
A+ IEPITEP < (Siezn(d+ 16D 717E - 2m))
~ 2
< (Siesm bi01+ 116 - 20772116 ~ 235
= Tjezn Luezn bibu (LI - 2vm|?)*/2| f(€ - 20m)|(1+ ||€ - 2§7]|2)*/2| f(€ - 24)],

where by = 1 and otherwise b; is equal to the maximum of (||£]|2+1)*/2(1+ /¢ — 2j=||?)~*/?
over { in Q™. Integrating the last expression involving U over Q™ and observing that

(U e = 2vm)72 Fle - 2wm) 1+ e = 23I2) 21 F(E - 24m)] € < VW,

- /
where_ we have put V; = (fq,.(l + 1€ = 2j7|2)*| f(€ — 2j7)|? dE)1 2. Hence, we have
- 2
L+ errweras 5 wivv = (3 6%)

veZ®" jeZ™ jEZ™

Note that 2a > n implies that the sum Y b? is finite. Then by Schwartz’s inequality

we have e
- €D U (€))7 a > bl V). 3.10
Ja+narrwera < (52 8)( 5 v7) (3.10)
Since 2; VP = [r(1+ €N12)2 7(€)]? A€, then by (3.7), (3.9) and (3.10) we have
€Zn
[ a+lamrisar©ra<c [ @+ emeifer e, (311)
R R®
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for all f € p(R™) and C =: Y b2

jezn
(2) Let f € L§(R™). By Lemma 7, we take fy in ¢(R™) for N € Z,, such that
Jm I+ 1P = Flllzy ey = 0- (3.12)
— 00

Note that a > % and

1(2) = 1@ < ™| g D 0 11202 = Pl

Then, by (3 12), fn(z) converges uniformly to f(z) on R™ as N — oo, and by (3.11),
{(1 + ||z||? )"/ZSZafN} is a Cauchy sequence in L,(R"). Let g(z) be the Lg(R")—hxmt of
1+ |=|)? )“/2SzafN(:c) Then, for any h € p(R™), we have

S §(@)h(2) dz = Hm oo [n (14+]2]12)*/282a f w(2)h(=) de
= lmp o0 Jpn S2afu(z) - F(L+ ] - [2)*h)(2) de

= Jpn S2af(@)F((L+]| - [12)*/?R)(2) dz

= Jan(1+ [12]%)2/252a f(2)h(z) dz

which shows that §(z) = (1 + [|[|?)*/252 f(z), = € R™, i.e. Souf € LE(RM).
As in [8] and [9], we denote the difference operator Aff defined by

/4
(ALFY( Z DECE f(e - kt), t € R™,

where £ is a positive integer and Cf = k,(l =R k = 0,1,---,£. Then, the differential

operator D* of fraction order a > 0 is given by (D*f)(z) = Lz(R") — lim,_,o+ (D2 f)(2),
[4

while (D2 f)(z) = H_}—(EJ f||t||>€ (ﬁ&t“ﬂ(:) dt, for £ > a. Here the constant d, ¢(a) is chosen

so that (D3f)(z) = [le]* F(z).

Lemma 10 Let the function p € C*°(R"™) satisfy the properties: suppu C [-2,2]";
|u(z)| £ 1, forz € R*; p(e) = 1 for z € [-1,1]*. For any f € L§(R"), a > %, if we define
fn(z) = u(F)f(z), then

i (1D fw = D f|Ly(rm) = 0
holds for 4 € [0, a].

Proof Since ||u(5)D"f —~ D" f||L,(r») — 0 as N — oo, it is sufficient to verify that
ID7 fiv = (55 D7 fllza(rmy = 0 as N — oo, (3.13)

for 4 € [0, a]. We prove the fact only for ¥ = a, the other cases are similar.
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As in [8], if a(t) is a function, by the formula

(Afa- f)(2) = ZCL(A a)(@)(AF*f)(z - kt),
we see that
(D=fn)(2) = u(F) D*f(2) + 72 Thes CE B f(2),

—k
Bnif(z) = [pe (@)@ k) 4

llefjm+

Next, we prove that

lim (| By fllzyme) = 0, for k=1,2,--,L. (3.14)

For k =1,2,---,£, note that [(Afu(5)))(z)| < C"%“k(l + Ilﬁ")_k for some constant C.
Then

-k
B f(2)] < e Jpn —o LR g
g+ (14 140 (3.15)
kfz—kt)| f(z—(k+v)t)|
f|t||<1 ||t||n+a—E dt+ C Zu—o Cl k f|t||>1 ||t“n+(a —¥(NHjt|)* dt.
Since f € L§(R"™), it is easy to verify that

AT £ (- = kt)l|, rny = O(UEN®),

where 6 = min{{ - k,a}.
Hence, we have

kg
| e i e

o[ T as) —0(), (3,10
L2(Rm) llel| <1

|t||n+a ~k
as N — o0,
£ — (k + 0)t) dt
A dt S f n = 0 1 s
“ /ntnzl T+ + I Al my S V122 s, T+ e~ O

(3.17)
as N — oo. By (3.15) to (3.17), we have

1 L-k
1Bx & Fllzarm) = O(575) + € }: CYro(1) = o(1), (N — ).

Therefore, (3.14) is valid. Further, Lemma 10 follows (3.13) and (3.14).

Lemma 11 Ifa > §, then the equality

I1D%f — D*S2a flI},(re) = 1D F1Z,(rny — 1D*S2a flI,(rm)
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holds for any f € L§(R™).

Remark When a = 2k is even and 2k > n + 1, Lemma 11 may be seen in [7], but there
the power 2 is missed.

Proof of Lemma 11 It is sufficient to verify that
/R D?(S20f)(2)D%g(z) dz = 0  (3.18)
holds for any g € L$(R") with Vg = 0.

Let u(t) € C®(R™) be defined in Lemma 10 and set fn(z) = p(5)f(z) and gn(z) =
p(%)g(z). Then, by Lemma 10, we have

Am | D%Ssafn — D*S2afllL,(re) = 0, (3.19)
Jim [|D%gn — D*gllL, (re) = 0- (3.20)

Let c; be the Fourier coefficients of the periodic function ||z||**X2a(2) and note that
¢; = O(|lj}|=™*) for large ||j|| (see [1]). Then by (3.19), (3.20) and Lemma 8, we have

Srn D*S2af(2z)D%g(z) dz = imy_,00 [pa D*S2a fn(2)D*gn(z) dz

= limy oo [pe (2uezu fN(V)e""“”)||z||2a22a(z)§N(z)dz
= limN—too EuEZ” EjEZ" ijN(l/)gN(l/ + .7) = 0)
in views of gy € L1(R") and Vgn = 0.

Proof of Theorem 3 If f € W&(R™), Lemma 11 implies that the function g =: f— S f
belongs to W3*(R"™). Note that Vg = 0. We have

E(D’Y,WZQ(R"),V, Lg(Rn)) S S\lprch(Rn) ”.D7f - D752af”L2(R")
< sup{l|D7 fllp,rmy : V=0, fe W3R}

First we prove that

(3.21)

E(D",W3(R"),V,Ly(R")) 2 , (3.22)

Ty
for v € [0, a].
As in [2], let the function u be defined in Lemma 10, and set

In(z) = p(—;’—) sin 721, for ¢ = (21,22, -+,%,) € R".

Then fn(z) = = [B(N(z — 1)) — B(N(z + €17))], where we have put e; = (1,0,---,0) €
R™. By Plancherel formula we have

1D N 113, (gmy = Jrm 1P 1 (€)1 A€

. (3.23)
= 2 S NP |A(N (€ ~ exm)) = B(N (£ + exm))|” dE.
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Note that R
2PN <INl ey = ||le|%2 R") < 2(4"7'NT).

Then, [pa [A(N (£ ~ exw)) ~ AN (€ + exm))?d€ > F=, and

“D fN“L W NN L, (Y
“fN“L 2(R"™)

_ JanUIEY 7> [EN (61 m)~ BN (E+erm)) [ de
Jan RN (E—e1m) =N (€ e m)P &€ (3.24)

< e+ ()" fo, (€I + 7 A(N (€ — exm)) - BN (E + erm)) &,

where Es =: {{ € R™: ||£]| > 7 + & or ||€]] < ® — 6}, while the § > 0 is chosen so that

7r

IEN® = x| < ¢, for £ € R™ with ||¢]| € (7 — 6,7 + §).
Since u € C*°(R™) and supp p € [-2,2]", we have

BV = s [ M@ de = O(WIEN ), Il £0, (325

for large N, where M is any positive integer. By taking the integer M > n + 7, we have

107 £l ey

N—oo ”fN”%Z(Rn)
for all ¥ € [0, a] and finally conclude that
”D—YfN“i:,(Rn) . “vaN”iz(Rn) “fN”iz(R")

= lm : = x20r-e) (3.26
N—+too ”DafN”iz(Rn) N—+oo ”fN“%z(Rn) ”DafN”%z(Rn) ( )

Let Fy(z) = HTJ{NNIIL:.‘%' Then, note that VFy(-) = 0 and VFy(—-) = 0, we have

E(D", W5 (R"),V, Ly(R")) > infrege max{||D"Fn(-) =TV Fx( - )llz,(mn)»
IDYEn( = )=TVFN(= zo(rm)} 2 1D F |y (rm)-

By (3.26), we have

(3.27)

D‘Y n
Jim (| DY Fyllz,re) = lim ID7 fwlls ey = g~ (@), (3.28)
— 00 . N

—oo [|D* fN || L,y (R

Thus, by (3.27) and (3.28) we obtain (3.22).
Next, we prove that the inequality

sup{|| D" fllL,(rn) : f € W5 (R™),Vf =0} =x"(@ (3.29)

holds for any vy € [0,a]. For any f € W"‘(R") with Vf = 0 and || D*f(|p, gy = 1, set
fn(z) = p(f)f(z) and Fy(z) = fN( N ). Let Fy denote the extension of period 27

— 374 —

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



of Fy in each variable, i.e. ﬁ’N(z + 2um) = Fyn(z) for any z in Q™ and v € Z". Then

VzNﬁ'N = 0. By Theorem 2, we have

- 1
1D FillLy(gny < (

. 2N

a—y o
)" NP Pyl q)-
By a change of variable, we have

S M) ID Fulinyen)

a—y

‘Note that ]}im | D% fnllz,(re) = 1. By Lemma 10, we have

1D llLymm) 1
Notoo |[|[D*fN||py(rey — ®@77

ID” fllL,(rey =

for any f € W5'(R™) with V f = 0.
Thus, we obtain (3.29). Proof of Theorem 3 is complete.
To prove Theorem 4, we need the following lemmas.

Lemma 12 For § > n, set
izt 1—e27iiz
¢ Xl zmlP

Kg(z,t) Al

= ﬂ l .
Wl” 2, Tereme

Then, we have _ ‘
ezmt - E CWtXﬂ(z _ V)

€z" .
Kﬂ(z,t) = Y ||t”ﬂ .

Proof As in [5], for each £ € R", set

g(z) = e Y~ eMixp(z ~v).
veZ®

_ e | DY fnllL, (re)
~ (2N)~*||D*FN||L,(qn) WD fNllL,(rm)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

Then, g is a periodic function, i.e., g(z +27v) = g(z) for any z € R™ and v € Z™. Further,

it is easy to verify that g has the Fourier series expression

_ “E + 27r.7|l_ﬂ ) 2nij-x n
g(:c)_.z ( S e+ 2n P e , € R".
JEZn vEDn

Thus, by (3.34) and (3.35) we obtain (3.33).

Lemma 13 For 8 > n, let Gg(z,t) = 1),. Jrn Kp(z,€)e %t d¢. Then, we have

(2w
(i) Gg(z,t) = Gg(t,z) for allz € R, t € R™;
(i) Gp(z,t) = pp(z — t) = X, ez pa(v — t)xp(z — v);
(iii) [gn |Ga(2,t)|dt < co;
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(iv) If f € L5(R"), then f(z) — (Sf)(2) = [gn Gp(z,t)DP f(2) dt
Proqf First, by the definition of Gg(z,t), we have

e"l'f E 1—e2®ive
271G t) = vezZh e+2mvl —iﬁtd
(27)*Gg(z,t) = Jgn ey Teteno-B € 3
uEZ"2 X
1—e xIvx

i le+2mvil®
—- . vez® i(z—t)¢
- z:.1€Z" fQ"+2J7r HEE E [\é+2mu|— = d§

_ E@—t&)EO&-E(~t6)E(ze) cilz—t)¢
= Jon T lietzm-? d¢.
vezZ®

Here we have put
21rwa:

> [I€ + 2vxlF”

vezn

Using the facts that E(—t,£) = E(t,—£€) and E(0,£) = E(0,—£), we see that Gg(z,t) has
the property Gg(z,t) = Gg(t,z) which is the assertion (i).
By using the similar discussion as in [1,Proof of Theorem 6] we may obtain

Gp(z,t) = O([ItII™"P), litll — o,

which shows that (iii) is valid. By (1.5), the assertion (ii) is obvious. (iv) may be obtained
by a similar discussion as proof of Theorem 1 in [5].

Lemma 14 Let 8 > a > 5 and 8 > n. Then

() ,inf 1f = Hlzaqmn = sup { Jnn F(E)DPg(t)dt : g € WE(R™) with Vg = 0} holds
for any f € Lo(R™).

(ii) E(Wg(R"),Sg2,L2(R™)) = sup{fR.. D f(z)DB-g(z)dz: f € W(R™), g €
W.f(R") with Vg = 0}.

Proof First, by the dual theorem in the approximation theory concerning the best ap-
proximation (see [13}), we have

1t I = Bl =sup{ [ fOp0)dt: pe LR, oL Spa).  (330)
ESB,Z Rn
Here the relation ¢ L S 2 means that

/ o(t)h(t)dt = 0, for all h € Sg..

For ¢ € Ly(R™) with ¢ L Sg, set g(z) = [ga Gg(z,t)p(t) dt. Note that y(z) in ¢(R")
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implies 7(z) in ¢(R™). By Plancherel formula, we have

Jor 21P3(2 ) (2) dz = fpa g(2)]| - [PY(2) dz
= [ 9(2) DP3(2) da
= ( Jn G2, 8)0(t) dt) DP4(z) de
= Jin (Jrr Gale,1)DP3(2) de ) o(0)
= Jan (3(t) = Toezn T)xs(t — v))elt) &t
= Jrn A()p(t) &t = [ B()y(t) dt

for all v € p(R"). Hence, we have §(t) = llz||?§(z), which implies g € Wf(R“) and
Vg = 0. Therefore, by (3.36), we get (i).

Let f € Wg(R") and g € Wf(R“) with Vg = 0. Then, by the definition of D? and
Plancherel formulal®!, we have

Jpn  F(2)DPg(2)dz = [pn f(2)l2]d(z) dz
= [ Izl F(=) - 121/ ~>3(=) d=
= [pn (D*f)(2)DP=g(2) dz.
Thus, by (i) we get (ii).
Proof of Theorem 4 By Theorem 3 and Lemma 14, we have
E(W3(R"), Sp,2, L2(R"))

< sup{[|DB-g||1,(rm) : 9 € WE(R"),Vg =0} (3.37)

< i

e

On the other hand, let fx(z) = gn(z) = y(%) sin 7z, and set

fn(z) gn(z).
Fn(z) = — 2227  and Gpn(z)= ———",
) = D% il V) = 1 Dgn s

where p(z) is defined in Lemma 10. Then Fy € W3 (R") and Gy € WE(R™)with VG =
0. It is easy to verify that

a (B-a) _ Jan D*In(@) D )gn(2) dz
fRn D FN(ZB)D GN(:B)dZ = ||D°.fN||L2(R")||Dﬂ9N||L2(R")

_ PP fn |y (R iPP 2 gN Ly (rRy
1D fnllL,(rm)IPPanilLy (R
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By (3.26), we have

LMy 00 [pa (D*Fiv)(2)(DP~*)Gy)(z) dz

3.38
D272 fxlly ) 1D anllzy(me) _ 1 %

1D INllLy(rm)IDPgnlL, (7 wa”

Hence, by (3.37), (3.38) and Lemma 14 (ii), we complete the proof of Theorem 4.
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TE Ly(R") RETFH) Riesz (B E LB HRIKE

x| & F
(FFMRAEHER, 100875)
8 X FBT Riesz I HZHEES SN LREN S TRYHGRAEE, FA00T
Ly(R™) i Riesz /355 5E H) — 2R B L ARETI & 2.
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