The Upper Radical Determined by the Class of all J-Semisimple Subdirectly Irreducible Rings *

YANG Zong-wen, WANG Jun-min (Dept. of Math., Yunnan University, Kunming 650091, China)

Abstract: F.A.Szasz has put forward the open problem 55 in [1]:

Let K be the class of all subdirectly irreducible rings, whose Jacobson radical is (0). Examine the upper radical determined by the class K.

In this paper, the problem has been examined.

- (1) It has been proved that the upper radical R determined by the class K is a special radical, which lies between Jacobson radical and Brown-McCoy radical.
- (2) It has been given some necessary and sufficient condition of ring A to be an R-radical ring.

Key words: subdirectly irreducible ring; special radical; antisimple radical; MHR-ring; Jacobson radical.

Classification: AMS(1991) 16N/CLC O153.3

Document code: A Article ID: 1000-341X(2000)04-0503-04

In this paper, any ring is an associative ring and any radical is a radical property in the sense of Amitsur and Kurosh. J, G and S respectively denote Jacobson radical, Brown-McCoy radical and antisimple radical.

Definition 1 A ring A is called a subdirectly irreducible, if the intersection of all non-zero ideals of A is non-zero. The intersection \mathbf{H} of all non-zero ideals of a subdirectly irreducible ring A is called the heart of A (See[1]).

Let $\mathbf{K} = \{A | A \text{ be a subdirectly irreducible ring, } \mathbf{J}(A) = 0\}.$

Theorem 1 The upper radical R determined by the class K is a special radical, and thus R is also a supernilpotent radical.

Proof First we shall show that A is a subdirectly irreducible ring with heart \mathbf{H} , then $\mathbf{J}(A) = 0$ if and only if $\mathbf{J}(\mathbf{H}) = 0$. In fact, if $\mathbf{J}(A) = 0$, since $\mathbf{J}(\mathbf{H}) \subseteq \mathbf{J}(A)$, so $\mathbf{J}(\mathbf{H}) = 0$. Conversely, if $\mathbf{J}(\mathbf{H}) = 0$ but $\mathbf{J}(A) \neq 0$, then $\mathbf{J}(A) \supseteq \mathbf{H}$. Because \mathbf{J} is a hereditary radical,

^{*}Received date: 1997-02-03

Biography: YANG Zong-wen (1965-), male, born in Yongshan county, Yunnan Province. M.Sc., currently a lecture at Yunan University.

so we have $J(H) = J(A) \cap H = H$. This contradicts the heart H of A is non-zero. Hence J(A) = 0.

Therefore $K = \{A | A \text{ be a subdirectly irreducible ring with a heart } \mathbf{H}, \mathbf{J}(\mathbf{H}) = 0\}$. And then we show that the heart \mathbf{H} of any ring A in K satisfies $\mathbf{H}^2 = \mathbf{H}$. In fact, because A is a ring in K and so $\mathbf{J}(\mathbf{H}) = 0$. If $\mathbf{H}^2 \neq \mathbf{H}$, since $\mathbf{H}^2 \subseteq \mathbf{H}$ and from the minimality of \mathbf{H} , we obtain $\mathbf{H}^2 = 0$. So $\mathbf{J}(\mathbf{H}) = \mathbf{H}$, a contradiction. Hence $\mathbf{H}^2 = \mathbf{H}$.

Therefore $K = \{A | A \text{ be a subdirectly irreducible ring with an idempotent J-semisimple heart } \}$. Thus K is a special class by theorem 12.3 of [1]. So the upper radical determined by the class K is a special radical, and thus it is also a supernilpotent radical. Theorem 1 is proved.

The upper radical determined by the class K will be denoted by R.

In the following, we give some characterizations of radical property R.

Let \mathbf{R}_1 and \mathbf{R}_2 be two radical properties. \mathbf{R}_1 and \mathbf{R}_2 respectively denote also the class of all \mathbf{R}_1 -radical rings and the class of all \mathbf{R}_2 -radical rings. Put $\mathbf{H} = \mathbf{R}_1 \cap \mathbf{R}_2$, then the union radical of \mathbf{R}_1 and \mathbf{R}_2 is $\mathbf{R}_1 + \mathbf{R}_2 = L(\mathbf{H})$ (see[1]).

Theorem 2 The radical $R \ge J + S.R_{\neq}^> J, R_{\neq}^> S.$

Proof Let $K_1 = \{A | A \text{ be a subdirectly irreducuble ring with an idempoent heart } H\}$, $K_2 = \{A | J(A) = 0\}$, then $K = K_1 \cap K_2$. Since the antisimple radical $S = UK_1$, the Jacobson radical $J = UK_2$, and $K \subseteq K_1$, $K \subseteq K_2$, so $R = UK \ge UK_1$, $R \ge UK_2$. Consequently, $R \ge (UK_1) \cup (UK_2) = J \cup S$. Therefore $R \ge L(J \cup S) = J + S$. Because $J \not\leq S$, $S \not\leq J$ (see[2]), and thus $J \not\leq J + S$, $S \not\leq J + S$. Therefore $R \not\geq J$, $R \not\geq S$. This completes the proof of theorem 2.

Theorem 3 $\mathbb{R}_{\neq}^{\leq} \mathbb{G}$, and thus $\mathbb{J}_{\neq}^{\leq} \mathbb{R}_{\neq}^{\leq} \mathbb{G}$, $\mathbb{S}_{\neq}^{\leq} \mathbb{R}_{\neq}^{\leq} \mathbb{G}$.

Proof Let $K_3 = \{A | A \text{ be a simple ring with a unity element }\}$. Then the Brown-McCoy radical $G = UK_3$. Take any $A \in K_3$, then G(A) = 0. Since J < G, and so J(A) = 0. Because a simple ring is a subdirectly irreducible ring, thus $A \in K$. Therefore $K_3 \subseteq K$. Consequently $R = UK \le UK_3 = G$. By [3], there exists a ring B, which is a J-semisimple simple ring, and also a G-radical ring, and $B \in K$. Hence R(B) = 0. And thus B is a R-semisimple ring, and also a G-radical ring. Therefore $R \nsubseteq G$. Theorem 3 is proved.

This complete the proof that the radical R determined by the class K of all subdirectly irreducible rings, whose Jacobson radical is (0), lies between Jacobson radical and Brown-McCoy radical.

Theorem 4 For an associative ring A, the following conditions are equivalent:

- (1) A is a R-radical ring.
- (2) Every non-zero homomorphic image A' of A is a subdirect sum of subdirectly irreducible rings with J-radical heart.
- (3) Every ideal I of A is the intersection of all ideals I_{α} in the ring A such that each factor ring A/I_{α} $(I_{\alpha} \supseteq I)$ is subdirectly irreducible ring with J-radical heart.

Proof (1) \Rightarrow (2) Let $\mathbf{R}(A) = A$, and A' be a non-zero homomorphic image of A. Then $A' = \sum_{S} \oplus A_{\alpha}$, where A_{α} is a subdirectly irreducible ring. Suppose \mathbf{H}_{α} is a heart of A_{α} .

Since $A \sim A' \sim A_{\alpha}$, $\mathbf{R}(A) = A$, so $\mathbf{R}(A_{\alpha}) = A_{\alpha}$. If $\mathbf{J}(\mathbf{H}_{\alpha}) \neq \mathbf{H}_{\alpha}$, then $\mathbf{J}(\mathbf{H}_{\alpha}) = 0$ by proposition 12.2 of [1], because J-radical is a hereditary radical and A_{α} is a subdirectly irreducible ring with a heart \mathbf{H}_{α} . Therefore $A_{\alpha} \in \mathbf{K}$, and thus $\mathbf{R} = U\mathbf{K}$. So $\mathbf{R}(A_{\alpha}) = 0$, in contradiction to $\mathbf{R}(A_{\alpha}) = A_{\alpha}$. Consequently $\mathbf{J}(\mathbf{H}_{\alpha}) = \mathbf{H}_{\alpha}$, and thus A_{α} is a subdirectly irreducible ring with a J-radical heart \mathbf{H}_{α} .

 $(2)\Rightarrow(1)$ Suppose every non-zero homomorphic image A' of A is a subdirect sum of subdirectly irreducible rings with J-radical heart. If $\mathbf{R}(A)\neq A$, then $A/\mathbf{R}(A)\neq 0$. Put $A'=A/\mathbf{R}(A)$. Because $\mathbf{R}(A')=0$, \mathbf{R} is a supernilpoent radical, and thus by theorem 11.5 of [1] A' is a subdirect sum of rings in \mathbf{K} , $A'=\sum_S \oplus A_\alpha$, where $A_\alpha\in \mathbf{K}$. Therefore every A_α is a subdirectly irreducible ring with a heart \mathbf{H}_α and $\mathbf{J}(\mathbf{H}_\alpha)=0$. Since $A\sim A'\sim A_\alpha\neq 0$, therefore by assumption, $A_\alpha=\sum_S \oplus A_{\alpha\beta}$, where every $A_{\alpha\beta}$ is a subdirectly irreducible ring with a heart $\mathbf{H}_{\alpha\beta}$, and $\mathbf{J}(\mathbf{H}_{\alpha\beta})=\mathbf{H}_{\alpha\beta}$. Since A_α is a subdirectly irreducible ring, and so there exists a β_0 such that $A_\alpha\cong A_{\alpha\beta_0}$. And thus $\mathbf{H}_\alpha\cong \mathbf{H}_{\alpha\beta_0}$. But $\mathbf{J}(\mathbf{H}_\alpha)=0$, $\mathbf{J}(\mathbf{H}_{\alpha\beta_0})=\mathbf{H}_{\alpha\beta_0}$, a contradiction. Therefore we must have $\mathbf{R}(A)=A$.

 $(2)\Rightarrow (3)$ Suppose every non-zero homomorphic image A' of A is a subdirect sum of subdirectly irreducible rings with J-radical heart. Let I be an arbitary ideal of A, then $A \sim A/I$, $A/I = \sum_S \oplus A_\alpha$, where A_α is a subdirectly irreducible ring with J-radical heart \mathbf{H}_α . Hence there exists an ideal $I_\alpha(I_\alpha \supseteq I)$ of A such that $A_\alpha \cong (A/I)/(I_\alpha/I) \cong A/I$, and $\bigcap (I_\alpha/I) = 0$. Therefore A/I_α is a subdirectly irreducible ring with J-radical heart, and $\bigcap I_\alpha = I$.

 $(3)\Rightarrow (2)$ Suppose every ideal I of A is the intersection of all ideals I_{α} in the ring A such that each factor ring $A/I_{\alpha}(I_{\alpha}\supseteq I)$ is a subdirectly irreducible ring with J-radical heart. If $A\overset{\phi}{\sim}A'\neq 0$, then $I=\ker\phi$ is an ideal of A. By assumption, $I=\bigcap I_{\alpha}$, where I_{α} is an ideal of A, A/I_{α} is a subdirectly irreducible ring with J-radical heart. Hence $\bigcap (I_{\alpha}/I)=0$, I_{α}/I is an ideal of A/I. Therefore $A'\cong A/I=\sum_{S}\oplus (A/I)/(I_{\alpha}/I)\cong\sum_{S}\oplus (A/I_{\alpha})$. This completes the proof of theorem 4.

Theorem 4 gives some necessary and sufficient conditions for any associative ring A to be R-radical ring.

Theorem 5 If the J-radical strongly coincides with the S-radical on the class M of rings (the class M is homomorphically closed), then the R-radical also strongly coincides with the J-radical and S-radical on the class M.

Proof Suppose the J-radical strongly coincides with the S-radical on the class M. Since $\mathbf{R} > \mathbf{J}, \mathbf{R} > \mathbf{S}$, and thus we have only to prove that, for any ring A in M, if $\mathbf{S}(A) = 0$, then $\mathbf{R}(A) = 0$. Let $\mathbf{S}(A) = 0$, then $A = \sum_{S} \oplus A_{\alpha}$, where A_{α} has a heart \mathbf{H}_{α} and $\mathbf{H}_{\alpha}^{2} = H_{\alpha}$. Since $\mathbf{S}(A_{\alpha}) = 0$, $A_{\alpha} \in \mathbf{M}$, and so $\mathbf{J}(A_{\alpha}) = \mathbf{S}(A_{\alpha}) = 0$. Hence $A_{\alpha} \in \mathbf{K}$, therefore $\mathbf{R}(A_{\alpha}) = 0$, and thus $\mathbf{R}(A) = 0$. Theorem 5 is proved.

Definition 2 A ring A is called a MHR-ring, if A satisfies the minimum condition on principal right ideals. (see[1])

Corollary The radical R strongly coincides with the radicals J and S on the class of all MHR-rings. The radical R does not weakly coincide with the radical G on the class of all

MHR-rings.

Proof Because the radical J strongly coincides with the radical S on the class of all MHR-rings(see[2]), and so the radical R also strongly coincides with the radical J and S on the class of all MHR-rings by theorem 5.

Because the radical J does not weakly coincides with the radical G on the class of all MHR-rings(see[4]), while the radical R strongly coincides with the radical J on the class of all MHR-rings. Therefore the radical R does not weakly coincide with the radical G on the class of all MHR-rings. The corollary is proved.

References:

- [1] SZASZ F A. Radicals of Rings [M]. Akademiai Kiado, Budapest, 1981.
- [2] HAO Cheng-gong. The Relationship Between Antisimple Radical and Jacobson Radical [J]. Journal of Shanxi University, 1988, 3
- [3] XIE Bang-jie. Abstract Algebra [M]. Shanghai Science and Technology Press, 1982.
- [4] WU Pin-san. On Radicals of Rings with Minimun Condition on Principal Right Ideals [J]. Journal of Mathematics, 1986, 6

J- 半单亚直既约环类确定的上限

杨 宗 文, 王 俊 民 (云南大学数学系, 昆明 650091)

摘 要: F.A.Szasz 在 [1] 中提出公开问题 55: 设 K 是 Jacobson 根为零的全体亚直既约环类, 研究类 K 确定的上根. 本文对此进行了研究, 证明了 Jacobson 根为零的全体亚直既约环类 K 确定的上根 R 是特殊根,它介于 Jacobson 根与 Brown-McCoy 根之间. 并给出任意结合环 A 为 R- 根环的充要条件.