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On Subspaces of Bloch Space *
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Abstract: In this paper, we give some inclusions on a sort of subspaces of Bloch space,
and prove these inclusions are sharp by use of the series with Hadamard gaps. The results
containing some known results on Besov spaces and Bloch space.
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Let D = {z : |z| < 1} be the unit disk of finite complex plane and A = {f : f is
analytic in D }. For a € D, let ¢4(z) = £5£ is the Mbius mapping of D to itself. For
p>0,g>0and p+q> 1, define

E(p,q) = {f: f € Aand sup [ |F()P(1- |2PP7(1 = 1ga(2))dm(z) < oo},
aeDJD
Bo(p,g) = {f: f € Aand lim [ |F(2)P(1~ |77 (1 = Iga(2)P")dmu(z) = O}

where dm(z) is the Lebesgue measure of D.

As usualy, the letters B, Bo,Q4and Q0 denote Bloch, little Bloch,g-Green Dirichlet
spaces and little ¢-Green Dirichlet spaces, respectively, and for p > 1, By is the classical
Besov spaces on D. Then, we have E(2,q) = Qq, Eo(2,9) = Q4,0 E(p,0) = By(p > 1) and
by [1], E(p,q) = B and E¢(p,q) = Bo when ¢ > 1.

In [2], we have proved the following inclusions:

1. If py < p3, then E(p1,9) C E(p2,9);

2. If ¢ < gz, then E(p,q1) C E(p, g2)-

And these inclusions are sharp when ¢ < 1 (or g2 < 1).

In the present paper, we will prove another sort of inclusions about E(p, q) and
Eo(p, q),and get some results on spaces B, and Q.
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Theorem A Let 0 < p; < p;,0 < q1 <1 andp, + ¢, > 1, then

(1) E(p1,q1) C N E(p2,q2);
.3\ —(lp:q )73 <ga<1
(2) Eo(p1,q1) C N Eo(p2, ¢2).

ﬂL};‘uﬁszSl

Proof (1) Let f € E(py1,¢1), then

sup/lf'(z)[”‘(l - 2P 21 - |$a(2)1?)"dm(z) = C < 0.
aEDD

Let a = %&2 > 1, then, by Holder inequality and [4] (Lemma 4.2.2),

V@I 0= 22220 = [6(2))% dn(z)

< [_/1; If'(z)lpl(l _ Izlz)m—z(l _ |¢a(Z)|2)q'dm(z)} P1 %
[/D(l = 121%)72(1 - |¢a(2)[?)*dm(z)] "5

A (o)t aem
< _ 2o
<Cn(l1 - | ) b = az dm(z)]

Py —p2

P,
<Cre
where C} is an absolute constant. So, we have proved that when1 > ¢5 > p‘—_(—lﬁm, fe

E(Pz,‘h)-
(2) Let f € Eo(p1,q1).{as} C D and |a,| — 1. Then, we need only to prove that:

when’x%ﬁ<q2§1

I(n) = /D IF(2)P*(1 = [22)27(1 ~ | s, (2)[*)=dm(z) — 0. | (1)

Forae D,0 < p<1,let U(a,p) = {z: |#a(2)| < p} be the pseudohyperbolic disk
with center a and radius p, and denote I(n) = I;(n) + I(n), where

hm = [ 1@ = P~ (g ()2 dm(z),
hw)= [ PP P70 oy ()P dm(),

Denote 2 = ga, (), fa(t) = (g, (w)], we have (1 — [wf2)|£1(w)] = (1 — |2P)|/(2).
Because f € Eo(p1,1) C B (see [2]), so there is a constant M > 0, such that (1 -
1z]2)| £(2)] < M, hence, for w € D and n = 1,2,3,..., we have

(1- [wP)lf(w) < M. (2)
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Let &1(1{5;2)- < 8 < ps, using (2) and the equality |} (w)| = l—_ll-‘f_—“[“u;(fnqm, we have
B = [ )P (1 = )P am(w)
D\U(0,p) v
sum= [ 1fw)l( - P m()
D\U(0,p)
<M [ £ (L |22 = g (2)2)% dm(2)] 7
1 —qp s
[27r/ (1- rz)ﬂ%i”_('u—_zrdr]
p

@ - s—p+s
< C2(1 - pz) n ’

4 Smid
P1

where C; is a constant independent of p and n. Hence, for any ¢ > 0, thereis po,0 < pg < 1,
such that, for po < p < 1, we have I1(n) < 5,(n =1,2,3,--).

Fixed a p € (po,1), and denote C5 = fU(o,p) Wllﬂ,_—ndxn(w), because f € Eo(p1,q1) C
Bo ([2]), so, thereisarg: 0 < ro < 1,

(L= 117 ()P < 56 3)

for 7o < |z| < 1, and there is positive integer no, such that, when n > ng, if z € U(an, p),
then |z] > ro. Now, let n > ny and using (3), we have

hmy= [ PP P70 o ()P dm()

£ (1 = [$aa(2)]?)® _ €
o P e O

This proved nlf-.% I(n) =0 and f € Eo(p2, ¢2)-
In [2], we have proved the following results:

Let f(z) = Y arz™ € A and satisfying "fl—-‘:—‘ > A > 1(k =1,2,3,--:). Then, the
k=0
following statements are equivalent:

(a) fe€ E(p,q)-
(b) f € Eo(p,q).

(c) § 21-9)( T |ay|P) < oo, where I,, = {k: 2" < k < 2"+ k € N}.
n=0

nkEIn

Using these results, we can show that:

1) In Theorem A, the inclusions are sharp. In fact, let fi(2) = ¥ an2?",a, = —7>
n=0 2 Pl
Then f1 € Eo(p2,92)\E(p1,q1)-
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2) In Theorem A, the low bound 2= :q‘ P2 is the best. In fact, for ¢, < B1= :q' Pz

let fz(z) = Z anzz"’an = ‘TIT-W' Then fz S Eo(pl,ql)\E(pz,qZ).
n=0 (n+1)P227 71

In Theorem A, let p; = 2,¢; = 0 and replace ¢; by ¢, p1 by p, we have
Corollary 1 Supposep > 2,then B, C (] Qgo0-
B2 cg<1
Because B, C By when 1 < p < ¢, we get

Corollary 2 If1<p<2,then B,C | Qgpo-
0<g¢<1

Corollary 3 Suppose 0 < p; < p;, then
1) E(ph ;11') C E(FZ;;};); EO(PI, l_}l-) C EO(p2a ,_:2") for pll + % > 1.
2) above inclusions don’t valid if pll + 515 <1.

Proof 1) If 0 < p; < 1, then E(pz,;,l;) = B and E’o(pz,i) = By. Hence the corollary is
true by [2].

If p, > 1 we choose ¢; = ialT’ g2 = p1—2 in Theorem A know that the results is true.

O
2) Now, suppose pil + pl—2 <1,let f3(z) = ¥ anz®" € A, where a,, = 1"(1_ Y
B r o

(n+1)P227 A1
one can prove that f3 € Eo(p1, }%)\E(pz, ;—2)

The author imagine that the inclusions E(p,, i) C E(p1, pl—l), Eo(p2, p%) C Eo(p1, pll)
should be vaild for pil + 1% <1,(p2 < p1)-
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