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Abstract: In this paper the regularity of set-valued martingales in the sense of Jy is
given first. Then we show some kinds of Doob’s stopping theorems for set-valued (super, -
sub) martingales with continuous time.
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1. Introduction and Preliminaries

Doob’s stopping theorems and optional sampling theorems for set-valued martingales
were first studied by [1]. [10] proved an optional sampling theorem for set-valued martin-
gales by virtue of [8], extending an earlier result of {1]. [13] established Doob’s stopping
theorems for set-valued (super, sub) martingales in £} (X). [12] established all kinds of
(super, sub) martingales, extending and improving results of {10] and [13]. The purpose of
the present paper goes on with the study of stopping theorems for multivalued martingales
with continuous time.

Let (X,]| - ||) be a separable Banach space with the dual X*, and 2% the set of all
subsets of X. Put

Ps(X) = {A€2X\D: Ais closed},
Puye(X) = {A € Pg(X): Ais (bounded) convex},
Puio(X) = {A € Ps(X): Ais weakly compact}.
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For A € 2X,| we denote by clA and c6A the closure and the closed convex hull of A
respectively, and define || A ||= sup{|| z ||: z € A}, '

d(z,A)=inf{llz —yll :y€ A}, d(z,0)=00, z€X,

s(z*,A) = sup{< z*,y >: y € A}, 3(z",0) = —oo, z¥ e X*.
s(z*, A) and d(z, A) are called the support function and.the distance function of A respec-

tively. For A, B € 2%, put h*(4, B) = sup{d(a,B):a € A}, h" (A, B) = sup{d(b,A) : b€
B}. The Hausdorff metric h on Py(X) is defined by

h(A,B) = max{h+(Al,B),h‘(A_,B)}, A, B € Py(X).

Then (P¢(X), h) is a complete metric spaces.

Let (2, F) be a measurable space. The collection of all F-measurable random sets is
denoted by M[F; P¢(X)]. Similarly, the collection of all Ps.(X)-valued (Pyrc(X)-valued)
random sets is denoted by M{[F; Ps (X ) M[F; Pyrc(X)])-

Suppose that (Q,F, P) is a complete probability space and G is a sub-o-field of F.
LY(Q,G,P; X) is the set of all G-measurable Bochner integrable random elements. We
also simplify L'(Q, F, P; X) as L}(; X). For F € M[F; P4(X)), set

SF(G) = {f~€ LY9,6,P;X): f(w) € F(w) as.},

and S}(F) is often written by S}. For random set F, if S} # 0, then we call F integrable.
It is easy to show that S} # 0 if and only if E(0, F) < oo. Put

£Y(X) = {F € M[F; Py(X)]: /Q | F | dP < oo},

Li(X)={F e L}X): F(w)€ Ps.(X)as.},
Like(X) ={F € LY(X): F(w) € Purc(X)as.}.

Let F € M[F,; Ps(X))], if Sk # 0, then the integral of F is defined by

| Fao={] rap: 15t

where [, fdp is the Bochner integral. This definition was a natural generalization of
point-valued function. For A € F, [, Fdp is the integral of the restriction of F on A. The
expectation of F is defined by EF = cl [, Fdp = cl{ [, fdp: f € Sk}
Put

LX) = {F € M[F; P{(X)|: Ed(0,F) < oo},

LE(X) = {F € M[F; Ps(X)]: Ed(0, F) < oo}.
Then E‘}I(X ) is the collection of all integrable random sets . The conditional expectation
of F e E‘}l (X) with respect to A, E(F|A), is the unique (up to a P-null set ) .A-measurable
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random set in E‘}l such that SIIE:(FM)(A) = cl{E(f]A) : f € SL}, the closure taken in
LY(Q; X) (see [7] Theorem 5.17). Note that if A is trivial, i.e., A = {0,Q}, then

E(F|A) = EF = cl/ Fdp.
0

The conditional expectation of a random closed set behaves much like the traditional
single-valued conditional expectation, for more details we may refer to {7]. Put

Pkac(X) = {A € Pfc(X) AN B(O,T) € PwkC(X),T > 0},

where B(0,r) is the closed ball of radius r, centered at 0.
The rest of this paper is organized as follows: In section 2 the regularity of multivalued
martingales is proved in the sense of J;,. Doob’s stopping theorems are discussed in section

3.
2. Regularity of Set-valued martingales in the sense of Ji.

In this section, let (2, F, P) be a complete probability space, a filtration with continu-
ous time (F3,t > 0) is given. Also (F;,t > 0) satisfies the usual conditions, Fo, = Vi>oF:.
By T (resp. Ty,T) we will denote the set of all (F;)-(resp. finite, bounded) stopping
times. Before we set up a theorem concerned with the regularity of continuous parameter

set-valued martingales, we introduce some notions of convergence of a family of sets in
Py(X). Let (4,A,,r > 0) C Py(X), put

w—1lmA, ={z € X : 3z, € A,,7 > O,s.t. 2, S z,7 — t},

r—t

w—lTr;l;A, ={z€X:3z, €A,n>1r, >tn— 00,5t 2, —>2z,n— 00},
r—

s—limA, = {z € X : 32, € A4,,5t. 2, > 2,7 > t},
r—t

3—-_1i—1;tA, ={zeX:3,,€A,n>1r, > tn—> 0,5t 2z, > 2z,n— oo}
r—

Here s-denotes the strong topology on X and w-the weak topology. Note that we always
have

s—_'h_IEA,Cs—HtA,Cw—-Ii_n%A,, s—1lmA, Cw-limA, Cw-limA,.

r—t r—t r—t r—t

Definition 2.1 (1) If ].in}h(A,,A) = 0, then we say (A,) convergent to A at t in the
Hausdorff metric and denote by (h) ljn% A, = A;

(2) If s — limA, = w — ﬁ.nEA, = A, then we call (A,) convergent to A at t in the

r—t
Kuratowski Mosco sense and denote by (K — M)hrr% A, =A4;

(3) If s—limA, = s — LmA, = A, then we call (A,) convergent to A at t in the
r—t r—

Kuratowski sense and denote by ( K) linr% A = A;
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(4) Ifw -~ hmA, =w- hmA = A, then we say (A,) convergent to A at t in the 7,

sense and denote by (Tw)hmA,. = A;

(5) If for each z* € x-, }113 s(z*, A;) = s(z*, A), then we say (A,) weakly convergent
to A at t and denote by (w)lj_IRA, = A;

(6) If for each z € X,lj_xgd(:c,A,.) = d(z, A), then we call (A,) convergent to A at t in
the Wijsman sense and denote by (Wijs)liir%A, = 4;

(7) If (w)li_ng, = A4, (Wijs)yi‘l}A,- =. A, then we say (A,) convergent to A at t in
the Ji-sense and denote by (JL)li_IRA,. = A.

Obviously, the notations of K — M and weak convergence of sets are in general disjoint
and are both implied by convergence in the Hausdorff metric. Also

(K - M)]jn%A, =A- (k)]jn%A, = A, (K—M)lin}A,. =A- (Tw)lirr%A, = A.
Lemma 2.2 Let (A,,r > 0) C P¢(X). Then

s—hmA,.-{a:EX hmd(:cA)—O}

r—t

Proof Take z € s — lim A,. There exist z, € A,,r > 0 such that ||z, — || — 0,7 — ¢.

r—t

Thus d(z, A,) < ||z, — z|| — 0,» — t. Hence h'n%d(z,A,) = 0. Conversely, take z € {z €
X: linid(z,A,) = 0}. For 7 > 0, there exists 2, € A, shch that ||z—z.|| < d(z, A,)+|r—t|.
Letting r — t gives ||z — z,|| — 0. Therefore, z € s — lim A,. The desired conclusion is

r—t
proved.

The proofs of following two lemmas are completely similar to those of analogous the-
orems in [2] [13], and are omitted.

Lemma 2.3 Let {4,A,,r >0} C Py(X), A, C G € P(X),r»>0. If'(K—M)]in}A, =
A, then (Wijs)lim,_,; A, = A.

Lemma 2.4 Let {4,A,,7 > 0} C Py(X),A. C G € Pyu(X),» > 0,ACG. I«
(‘rw)lin%A, = A, then (w) linﬁA, = A.

Proposition 2.5 Let (A, A,,7 > 0) C P;(X),A, C G € Py(X),r > 0. Then the
following statements are equivalent:

(1) (Jo)lim A, = 4;

(2) (K - M)li_ng, = A.
Proof (1) — (2): For z € A, (1) imlpies li_r}}d(:u,A,) = d(z,A) = 0. Applying Lemma
2.2 we have z € 5 — PLI:A . This means A C s — PLI;A . Furthermore, by Proposition 1.2

of [11] and (1) we deduce that w — hmA CA Hence ACs-limA, Cw-— hmA C A.
r—t
This yields (2) holds.
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(2) — (1): (2) and Lemma 2.3 imply (Wijs) lin% A, = A. On the other hand, since
(K-M) lim A, = A, we obtain (rw)ljrr% A, = A. Using Lemma 2.4 we get (w)]jn%A, = A.
Hence (2) holds. O

Immediately from Proposition 2.5 and Theorem 5.3 of [3], we can easily prove the fol-

lowing theorem concerned with the regularity of continuous parameter multivalued mar-
tingales in the sense of Jr,.

Theorem 2.6  Suppose that {F;,%,t € R,} is a set-valued martingale in
Ll:..(X), and there exists H € Ll, (X) such that Fy(w) C H(w),w € Q,t > 0, §

wke
is a countable dense subset of R, containing 0. Then there exists an adapted process

{F,Fi,t € Ry} in L1, (X) such that

wke

(1) {F.,t € R} is Jy-right continuous and for almost all w

Fyw) = (JL)rlltiIrIés F(w), t>0;

(2) For almost all w, F;_(w) = (Jz) TtHIgR F.(w) exists for each t > 0 and
rit,r +

Frew) = (Jp) lim F.(w);

(3) For eacht > 0,F,=F, as,; ;
(4) {F:,F,t € Ry} is a multivalued martingale.

3. Doob’s stopping theorem for set-valued (super, sub)martingales with
continuous time

Definition 3.1 A Pj.(X)-valued (super, sub) martingale (F;,t € R,) is called right-
closable, if there exists an integrable Ps.(X)-valued random set F,, € F., such that for
each t € Ry, E(Fw|F:) = (C,D)F; a.s.. In this case (F;,t € R,) is called a right-closed
set-valued (super, sub) martingale, and F,, is the right-closing element of (F;,t € R}).

When (F;,t € R, ) is a martingale in L%.(X); or when X* is separable and (F;,t € Ry)
is a martingale in £} (X); or when (F;,t € R,) is a martingale in L. (X), immediately
from (7], [6] we see that for a right-closed set-valued martigale the right-closing element is
uniquely determined. By virtue of properties of support function one can easily prove the
following theorem, and so is omitted.

Theorem 3.2 Suppose that (F;,t € Ry) is a Py.(X)-valued w-right continuous martin-
gale. If there exists a H € L], (X) such that Fy(w) C H(w),w € Q,t € R, then for
S,7€T,S <t we have

E(F.,-lfs) = Fs a.s.. (3.2.1)

The following theorem is a strengthened form of above Theorem 3.2.

Theorem 3.3 Suppose that (F,t € Ry) is a Py.(X)-valued w-right continuous martin-
gale. If there exists a H € L}, (X) such that Fy(w) C H(w),w € Q,t € R, then for

wke

— 519 —



S,7 €T, we have E(F,|Fs) = Fspr a.s..

Proof By Theorem 3.2 we know F, € L}, (X). Since F, = FTI[735]+FTV5I[,>5], using
Theorem 3.2 we obtain

E(F'rlfS) = E(FTI[TSS]+FTVSI[T>S]I‘FS)
= E(Fr I, <5)|Fs)+ E(FrvsIiy» 51| Fs)
= Frlircs)+B(Frvs|Fs)irss)
= F.,I[,.SS]-i-FsI[.,>s] = Fgpr a.s..
Corollary 3.4 Let F € L., (X). Then for S,7 € T we have

E(E(F|Fs)|F,) = E(E(F|F,)|¥s) = E(F|Fsn:) a.s.. (3.4.1)

Proof Using Theorem 2.6 and Corollary 2.60[4] we can prove it easily. O
Next we discuss Doob’s stopping Theorem for unbounded set-valued supermartingale
with continuous time. To this end,we give the following two definitions.

Definition 3.5 Let (At > 0) C Py(X). {A:,t > 0} is called RW continuous at tg, if for

each r > sup d(0, A;) we have
>0

Jlim s(z*, A¢ N B(0,7)) = s(z*, Ay, N B(0, 7)), zhe X",
hnd

If {A;,t > 0} is RW -continuous for all t € Ry, then we say {A:,t > 0} RW -continuous.
Similarly, we can define RW right continuous.

Obviously, when {4;,t > 0} is bounded, (namely, there exists » > 0 such that
sup;>o || Atl] < r) {A:,t > 0}RW-(right) continuous — {A;,t > 0}w-(right) continuous.

Definition 3.6 If {A;,t > 0} C Py(X) is both Wijs-right continuous and RW -right
continuous, then we call {A;,t > 0}J}-right continuous. Let {F;,t > 0} be a set-valued
process, if for each w € Q,{Fy(w),t > 0} is J}-right continuous, then we say {F;,t > 0}
Ji -right continuous.

Lemma 3.7 Let (F;, F;;t € Ry) be a Py, (X)-valued Jy-right continuous supermartin-
gale. Then for S € T, we have Fg € E‘ﬂ(X). In addition, for S,7 € T,S < r, if one of
the following conditions is satisfied:

(i) {F.,t € Ry} C L1 (X),E|F| < oo, E||Fs|| < o0, X* is separrable;

(i) {F:,t € Ry} C LL(X),E||F;|| < 0, E||Fs|| < 0,

wke

then we have E(F,Fs) C Fs a.s..

Proof It is completely similar to those of Proposition 3.15 in [12] and Theorem 3.2, and
so is omitted. O

Now we turn our attention to Doob’s stopping theorem for set-valued right-closed
supermartingale whose values may be unbounded.

Theorem 3.8 Assume that (F,F,,t € Ry) is a J}-right continuous Pj.(X)-valued
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right-closed supermartingale. Then for S € T, we have Fs € C‘}i(X ). In addition, if X*
is separable, or Fy(w) € Prykc(X),w € Q,t € Ry, then for §,7 € T, S < T we have

E(F‘,-lfs) C Fs a.s.. (3.8.1)

Proof Assume (F;, F;,t € Ry) is J}-right continuous, by Definition 3.6 we deduce
{d(z, F}),t € R} is aright continuous adapted process for each z € X. Thus {d(z, F,),t €
R;} is a progressive process by (4] Theorem 3.11. Using [4] Theorem 3.12 we conclude
d(z,Fs) € Fs for each z € X. Thus Fs is measurable w.r.t. Fs. Because (F, Fi,t € Ry)
is a right-closed supermartingale, using [5] we know {d(0, F;), F;,t € R} is a non-negative
right -closed submartingale. In particular E(d(0, Fs|lF;) > d(0, F}) a.s., t > 0. Set

& = E(d(O,Foo)lft) +1,te —R+.

Since the filtration (F;,t > 0) satisfies the usual conditions, {£;,t € R,} has a right-
continuous adapted modification. For simplicity, we still denote it by (¢;,t € B, ). Put
GF = B(0,k¢),t € By, k > 1. Evidently, the above argument shows F, N GF # 0,k >
1,t € Ry. For s < t,k > 1, using [5] Lemma 4.2 we obtain

E(F. N G|7,) C E(F|F,) 0 B(GHF,)
C F, N E(B(0, k&) F,)
= F, N B(0, E(k&|F,))
= F,NB(0,k¢,) = F,NG* as..
Similarly, E(Fo NG% | F,) C F,NG*. Hence (F,NG¥,t € R, )isa Pg.(X)-valued Jp-right
continuous supermartingale. On the other hand, since
IF 0 GEl| < G| < kér = K(E[d(0, Foo)|F,] + 1),
I1Fs N GSIl < k(BId(O, Fu)|Fs] +1), k> 1,

we get E||F, N GE|| < 00, E|Fsn G%|| < oo. Therefore, by the monotone convergence
theorem of conditional expecation [6] and Lemma 3.7 we get

B(F\Fs) = B[ (F, 0 GY)| 7]
k=1

= [ E(F, n Gk|Fs)]
k=1

ch FsNGY)] = Fs.

Thus (3.8.1) is established. O

Corollary 3.9 Assume that (F,,F,,t € R,) is a J}-right continuous Pj.(X)-valued
right-closed supermartmgale If X* is separable or Fi(w) € Pryr(X),w € Q,t € Ry,
then for S, € T, we have

E(F;|Fs) C Fsar a.s..
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Finally, we give the Doob’s stopping theorem for right-closed set-valued submartingale
to end this section. The proof of it is totally similar to that of Theorem 3.2, and is omitted.

Theorem 3.10 Let (F;,t € R) be a w-right continuous right-closed submartingale, and
there exists H € L1, (X) such that F,(v) C H(w),w € Q,t € R;. Then for S,7 €T, S <
T we have

E(F.r'fs) D Fs a.s..
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