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Abstract: In this paper, we investigate the structure of K;Op for F = Q(\/E), d=-3
mod 9 and d # —3. We find the element of order 3 of K;O0f for F = Q(+/-21) and
generated elements of K,Op = Z/(2) @ Z/(8) & Z/(3) for F = Q(v/15). We get the
property of R, F, which develops a Tate and Bass’s theorem, and give the structure of
K;Op for F = Q(1/29) and the presentation relations of SL,(OFr)(n > 3).
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1. Prerequisites

Let Of be the ring of integers of a number field F. Many papers [4][5] have given
explicit finite presentation of certain K,Op and SL,(Of)(n > 3), and these results are
about small size of certain K,Op.

D.Quillen proved the exact sequence

0 — K0 — K, F 5 [[ F — 0, (1.1)
v fin.

where the sum is extended over all finite places v of the number field F, and the homo-
morphism 7 is defined by the tame symbols

{a,b} — (a,b), = (=1)"*®) O p=¥(3)(mod v).
C.Moore got the exact sequence

0 — RF — K,F s [[ #wo—n—0, (1.2)

v non C.
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where the sum is extended over all non-complex places v of F, u (resp. p,) is the group of
unit roots in F (the completion field F,), the homomorphism % is defined by the Hilbert
symbols: {a,b} — [a,d],. It is well-known that, for any finite place v, [a,b].,m"/]\r"_1 =
(a,b)y with m, = |n,]. J.Browkin have described the structure of K;0p/R2;F. When
F =Q(Vd),d = -3 (mod 9), and d # —3, K;0r/R,F has an element of order 3.

Put A = {a € F*|{-1,a} = 1}. J.Tate[9] proved that [A : F*?] = 21*"2 for every
algebra number fields, where 7, is the number of complex valuations of F. Consequently
A = F*2 U 2F*? for every totally real field not containing /2.

" Assume that F is complete under a discrete valuation v with finite residue class field
F and |F| = pf where p is prime. Let e = v(p) be the ramification index of F. When
F contains the p-th roots of unity, let eo = e/(p — 1). Any element § of U, (a €
Upes»v(1 — @) > peg), which does not have a p-th root in U,,, will be called a distinguished
unit of F. if 7 is a prime element and § is a distinguished unit, then {r,#} is a generated
element of Cyclic group K, F/(K3F)P and [r,6], # 1 (see [7] Appendix).

2. Elements of order 3
By [1], we know that

3-28, ford=-3mod9,d# -3,
27 otherwise,

leOF/\SRzFl = {

and the element of order 3 of K20p/R2F is determined by the element a € K,Or with
Nw(a) # 1,v|3. Therefore, we get

Lemma 2.1 Let d= -3 mod 9,d # -3, and F = Q(v/d). If a € K,0Or and (), v|3,
is a element of order 3 in p,. Then the order of @ € K20 /R, F is divided by 3.

In fact, such element can be found by a distinguished unit in the completion field
Fy,v|3 (see [7]).

Example 1 F = Q(1/6). Since
{6,-8 + 3v6} = {6, —(v6 — 2)(vV6 — 1)} = {v6,2 — V6}?
={2,2 - V6}*{v6,2}* = {2,5 — 2v6},

it is obvious that {6, —8 + 3v/6} = {2,5 — 2¢/6} € K,0p; on the other hand, —8 + 3/6 =
1+ 3v6 — 9 is a distinguished unit in F,,v|3, so [5—2v/6,2], is an element of order 3. Let
€=5-2V6,(1-¢)? = 8,

{e,2}° ={e,-8e} = {e, - (1 — €)®} = {e, -1} = {8¢, -1} = 1.
Hence {6,—8 + 3v/6} = {2,¢} is an element of order 3 of K,OF.

Remark 2.2 In [3], Dennis and Stein used another way to prove that {5 — v/6,2} # 1.
But this way is more direct and convenient.

In the following, we use the way to find elements of order 3 in F = Q(v/=21) and
F = Q(V15).



Example 2 F = Q(v/—21). Since —21 = —3 mod 9, K;0r /R, F has a element of order
3. 284+ 64/~21 =1+ 6y/—21 4+ 27 is a distinguished unit in F,,v|3, [-21,28 + 64/-21],
is an element of order 3. It is obvious that {—21,28 + 6,/—21}2 = {-21, (/=21 -
V=21 + 1)}? = {-21,/-21 — 7}*> € K,OF and its order is divides by 3. We will
compute {—21, /=21 — 7}2 of order.

{~21,v=21 — 7} = {V=21,-21(1 + V—21/3)}* = {3,v—21 - 2},

{=21,v=21 - 7} = {V=21,14(2 - vV—21)} = {V/—21,28}{2,v—21 — 2},

{-21,v/-21 - 7}* = {7,-1}{4,V-21 - 2} = {4,V-21 - 2},
where {7,—1} = 1 by [8]. On the other hand,

{-2100,v/-21 - 2} = {(vV—=21+ 3)(V—-21 4 7),v/—21 — 2}*

= {6(v/-21 - 2),v/—21 — 2{7(-3 + V-21)/v/-21,v/-21 - 2}?

= {-6,v/—-21 — 2}{—49/21,v/—-21 — 2} = {14,V/-21 — 2},
so 1 = {~150,/-21 — 2} = {-6(v/—21 + 2)(2 — v-21),/-21 — 2} = {-6(/-21 +
2),v/=21 - 2}, Also
1= {(V=21+2)/4,(2 - vV—21)/4} = {V=21+ 2,2 — V-21}{2 — vV-21,4}{4,V—21 + 2},
{(V-21+2,2 -v=21} = {4,(2 - V=21)/(2 + V-21)} = {4,2 - V-21}~.
Hence, we get

{4,v/=21 -2} = {V/=21 + 2,2 — vV—-21}{4,vV—21 — 2} = {-1,-1}{28,V-21}.

From the most preceding three equality,

{28,v/—-21} = {6/9,v/—21 — 2} = {6(2 — vV/-21)/9,V—-21 - 2}
= {(vV-21+3)/3,v-21 - 2}*{-1,v-21 - 2},
1={V-21-7,-1} = {14(2 - v-21),-1} = {7,-1}{2 - V21, -1}
={2-+v-21,-1},
{-1,-1}{28,v/—=21} = {(vV-21 + 3)/3,V~-21 — 2}*.
Let S = {v = (5,v/—21 - 2)|n({(vV=21 + 3)/3,v/=21 — 2}) = —1), for all finite places

v}. But the equation z? + 21y? = 5z%,6 = 1,0r2, have not solution in Z, Hence
{-1,-1}{28,1/-21} # 1, so {4,1/—21 — 2} is an element of order 6 in K20p.

Example 3 Let F = Q(+/15). Since d = 15 = —3 mod 9, K,0r/R,F has an ele-
ment of order 3. Also 10 + 3v/15 = 1 + 3v/15 + 9 is a distinguished unit in F,,v|3,
{15,2} = {2,15}3, {15,20 + 615} = {15,(v/15 + 1)(v15 + 5)} = {3,(V15 + 3)/3}% =
{3,v/15 4+ 4} € K,0p. Therefore 15,20 + 64/15}, = [15,10 4+ 3v/15], € p, is an element
of order 3, and 3|o({3,4 + v/15}). Let e = 4 + /15,62 + € + 1 = 9,

_ 23
= (-1l = {-Le}.

{3’5}6 = {9>€}3 = {95’5}3{"1’5} =1
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Hence o({3,e} = 12 and {~3,¢ — 1} € K,Op is an element of order 24 by {-3,¢ — 1}2 =
{3,¢}. By Birch-Tate conjecture, Wo(F)(p(~1) = 48 for F = Q(+/15) and 15 = 3-5. We
get

Theorem 2.3 F = Q(V/15), then K,0r = Z/(2) ® Z/(8) ® Z/(3), where {-1,-1} is a
generated element of Z./(2) and {-3,3 4+ v/15} is a generated element of Z./(8) @ Z/(3).

3. ®u F

For quadratic number fields, we know the structure of K,Op /R, F. In the section, we
discuss the property of R, F and find the element of R, F.

Theorem 3.1 If{a,b} € R, F, m is a squarefree integer, then {a,b} € (K.Of)™, moreover
a is a norm of the ring Flz]/(z™ - b).

Proof Let o({a,b} = n. Without loss of generality, suppose that there is a prime p such
that p|m, p|n, we will prove {a,b} € (K F)".

Since {a,b} € R, F, for any finite valuation v, [a,b], = 1. By C.Moore theorem [7],
{a,b} € (K,F,)™, which is a divisible group. Hence {a,b} € (K. F,)™? C (K2F,)",s0 a
is a norm an element of the ring F,/(z? — b).

If {, € F is a primitive p-th unit root, then F({/b)/F is a cyclic extension. By
Hasse theorem [6], we know that a is a norm of a element of the field F[z]/(zP — b), so
{a,b} € (Ko F)P.

If £ ¢ F, take E = F(§,). Since {a,b} € (K.F,),{a,b} € (K;E,)?, where v’ is any
extension of place v. Without loss of generality, let b ¢ E, by the above discussion, we get
a is a norm of E({/b)/E. Let v € E(¥b) = L,Npg(7) = a, Ny p %)(7) =0,Ng/r(a) =
a®, where s = [E : F|. Set i,j € Z with is + jp = 1, then NF( %)/F(a"") = aiPtis — 4.
Hence {a,b} € (K2 F)? by [7], moreover we know {a,b} € (K2F)™, where m is a squarefree
integer.

In the following, we investigate the structure of K;0p of F = Q(\/ﬁ) Hurrelbrink
used the Birch-Tate conjecture to compute that #R,F = 3 and #K,0fr = 12. We will
find the element of order 3 in R, F. First, we describe two lemma of J.Tate [9].

Lemma 3.2 Let E = F(§,),A = Gal(E/F), then there is an exact sequence
(6 ® E")® — Ky F 5 KoF — Ky F/(K,F)P — 0,
where the homomorphism 7 is defined as:

(Ep ® E*)A L (K2F)p
| L f ,
Ep ® E* 25 (KZE)p

where f is a canonical homomorphism and vg : £, ® a — {&p, a}.

Lemma 3.3 Let ry be the number of complex places of F. Let ¢ = 1 if [F(§,) : F] <2
and € = 0 otherwise. Then kery is an elementary abelian group of order p™7¢.
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Theorem 3.4 F = Q(v/29), K,0r = 2/(2)®Z/(2)®7%(3), where {—1,~1} and {-1,¢e},e =
;/Lgﬁ, are generated elements of Z/(2) ® Z/(2), and {w,8},w = f‘?—“, is a generated
element of Z/(3)(= R, F).

Proof It is clear that {—1,-1},{~1,e} € K,0F and {~1,-1} # {-1,e} by N(¢) = —1.
Also {8,w} € K;0F and {8,w} € R, F for —w € F2(v|2). Note that 8 = w? —w + 1 =
(w® +1)/(w + 1), so {8, —w}® = 1. In the following, we will verify that {8, w} # 1.

Set E = F(), where £ is a primitive 3-th unit root. In K, E,

{8,-w} = {w’ -~ w+1,-w} = {(1+ wf)(1 +wE?),-w} = {££ +w}.

Suppose that {8,~w} = 1, then 7(£ ® £) = 1,7(£ ® (€ + w)) = {8,—w} = 1. But
EQR(E+w),éE®E€ (u3® E)A and £ @ (¢ + w) # € ® £, which is a contradiction with
Lemma 3.3. Hence {8, -w} # 1.

Since 1 = er2,wH} {2, wHw+2,2H{-w,w+ 2}, {~w,w+ 2} = {2,w + 2H{w, 2}.
Also {1-(w+2)%,w+2} = {2w(w+2),w+2} = {2, w+2}H{-w,w+2} = {4, w+2}{w,2},
so {8, w+2}? = {4,w+2}% = {8, w} We easily know that {8, w + 2} € R, F is an element
of order 3.

Theorem 3.5 F = Q(v/29). Then SL,(Or)(n > 3) has the following presentation:
generators: elementary matrices z;;(t) witht € Op,
relations: usual Steinberg relations and in addition only. the three relations given by:

hlz(-——l) = 1, hlz(—’w - 2) = hlz(—l)hlg(’w + 2),

and

w(w + 2) 2
“lwrap (w27

Proof It is well-known that K3(n,0f) = K,Op and SL,(OF) = St.(Or)/K,OF,
where St,(OF) is a Steinberg group. We obtain an explicit presentation of SL,.(OF)
in terms of the usual relations of the Steinberg group St,(Or) by adding only those
relations which correspond to a set of generators of K;0p. {8,w + 2} may be presented
by Dennis-Stein symbol [3] in K;0p. Since (w + 2)® — 1 = 2w(w + 1)(w + 2), take
a=-2,b=—w(w+1)(w+2). (a,b) looks like {8, w + 2}. Hence we get the presentation
of SL,(OF).

)z12(—2)221 (—w(w + 1)(w + 2))z12( = hia(w + 2)°.
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