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Abstract: Let R be an abelian ring ( all idempotents of R lie in the center of R), and
A be an idempotent matrix over R. The following statements are proved: (a). A is
equivalent to a diagonal matrix if and only if 4 is similar to a diagonal matrix. (b). If
R is an APT (abelian projectively trivial) ring , then A can be uniquely diagonalized as
diag{ey,...,en} and e; divides e;41. (c). R is an APT ring if and only if R/I is an APT
ring, where I is a nilpotent ideal of R. By (a), we prove that a separative abelian regular
ring is an APT ring.
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1. Introduction

Whether an idempotent matrix over a ring R can be daigonalized under a similarity
transformation is an interesting problem not only in matrix theory, but also in module
theory and algebraic K-theory. In module theory, this problem becomes whether a finitely
generated projective R-module can be written as a direct sum of Re;, where e;’s are idem-
potents of R. And by Theorem 1.2.3 of [1], Ko(R) can be computed from the idempotent
matrices over R.

Let R be a commutative ring with identity. In 1945, Foster proved the following
theorem for a commutative ring R with identity (see [2] for details): Each idempotent
matrix over R is diagonalizable under a similarity transformation if and only if each
idempotent matrix over R has a characteristic vector.

Recall that a ring with identity R is a PT (projectively trivial) ring if every idempotent
matrix over R is similar to a diagonal matrix. In 1966, Steger in [3] utilized Foster’s
Theorem to prove the following two theorems:

Theorem A Let R be a commutative ring with identity and A be an n X n idempotent
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matrix over R. If there exist invertible matrices P and Q such that PAQ is a diagonal
matrix, then there is an invertible matrix U such that UAU ! is a diagonal matrix.

Theorem B Let R be a commutative PT ring and A be an n x n idempotent matrix
over R. Then

(a) There is an invertible matrix P with PAP~1 = diag{a,, as, ..., a,} where a; divides
ajy1 forl1 <i<n-—1.

(b) If Q is another invertible matrix with QAQ ! = diag{b,, bs, ..., b, } where b; divides
biy1 for1<i<n-—1,thenbd;=aqa; forl1 <i<n.

We call R an abelian ring, if R is a ring with identity and all idempotents of R lie in
the center of R. We will demonstrate in this paper that Foster’s Theorem and Theorem
A can be generalized to abelian rings (Theorem 4 and Theorem 1 separately). Since there
are no usual trace and determinant functions for matrices over noncommutative rings,
the methods in Foster’s and Steger’s proofs need to be improved. As an application, we
generalize Theorem B to APT (abelian projectively trivial) rings (Theorem 5).

Let I be a nilpotent ideal of a ring R, we prove that R/I is an APT ring if and only
if R is an APT ring (Theorem 8). Then we prove that R[zq,z3,...,2,] is an APT ring if
and only if (R/I)(z1,2,,..., 2] is an APT ring.

In (4], the authors defined a ring with identity to be separative if for any finitely
generated projective R-modules A and B, 2R & A ~ R ® B implies R ® A ~ B. Finally,
as an application of Theorem 1, we point out that a separative abelian regular ring is an
APT ring (Theorem 10).

2. Main results

Theorem 1 Let R be an abelian ring and A be an n x n idempotent matrix over R. If
there exist invertible matrices P and Q such that PAQ is a diagonal matrix, then there
is an invertible matrix U such that UAU ! is a diagonal matrix.

Proof Suppose that there exist invertible matrices P and Q such that PAQ = diag{by, b2,
++,bp} = B. Set U = Q7 1P~1 = (uy), then (BU)? = BU and BUB = B, which implies
b; = byu;b;, and so, byu; and u;;b; are idempotents of R. Set e = b;ju;;, then b; = eb; and
b; = e(1—e+b;). It is easy to verify that (1—e+b;)(1—edeu;) =1 = (1-eteu;)(1—e+b;)
So 1 — e+ b; is a unit, b;u;; and b; differ by a unit factor. Thus we may assume that Q
has been adjusted so that b7 = b;,i = 1,2,...,n. The matrix equality BUB = B gives (a)
biui; = bi,i=1,2,...,n;

(b) bibju;; =0,i# j;4,5=1, 2,---,n.

Let D be an n X n matrix whose (¢, 7) entry is bju;; if i # j and 1if ¢ = j, then D? =
2D - I, so D is invertible. It is easy to verify that DBU = BD. Thus, (DP)A(DP)™?
D(PAP~')D-! = D(PAQQ~'P~1)D-' = DBUD-!'=B. O

Theorem 2 Let R be an APT ring. Then any right (left) unimodular vector (a4, a, ..., a,)
in R" is completable (i.e., it can be seen as the first row of some invertible matrix).

Proof Suppose that a = (ay,ay, ..., a,) is right unimodular. Let 8 = (81, B, ..., Bn)t € R®
such that a181 + a2f2 + -+ + anfn = 1. Set A = Ba = (Bia;), then A2 = A. Since R is
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an APT ring, there exists an invertible matrix P with PAP~! = B = diag{e;, ez,...,€n}.
Let X = (21,...,2n) = aP™, Y = (y1,..,9n)! = PB. Then XY = a8 = 1, YX =
PAP™! = diag{ey,...,en}, and a is completable iff X is completable. Since YTy =1,
vizi = €, and y;z; = 0 (i # j), so yiziy; = i, @;yiz; = @;. Thus e; = y;z; and
fi = #;y; are idempotents. Since R is an abelian ring, e; and f; are in the center of R,
e = € = yiziyizi = yifizi = fiei, f; = f} = wiyiziyi = zieiyi = fiei, 50 €, = fi, e,
ziyi = yizi. Thus (XL, 2:) (T, 4) = (T 4:)(Xie1 i) = X%, @iy = 1, this means
z =737 ,2;is aunit of R. Let

y T2 T3 -+ Ty

-1 1 0 --- 0 1(1) g
p=|-1 0 1 -.- 0 , P= '
10 0 - 1 10 1
Then
T T2 Tn
0 1 0
DP = .
0o 0 --- 1

is invertible, so D is invertible, and hence X is completable. This implies that a is
completable.

Corollary 3 If R is an APT ring, then any stably free R-module is free.

Proof It follows from Theorem 2 and Corollary 4.5 of [5]. O

Let R be a ring, A be an idempotent matrix over R and a € R™ be a unimodular
vector. Recall that a is a characteristic vector of A if a is completable and Aa = a for
some A in R.

The following theorem generalizes Foster’s Theorem (see [2]) to abelian rings.

Theorem 4 The following statements are equivalent for an abelian ring R:
(a) Each idempotent matrix over R is diagonalizable under a similarity transformation.
(b) Each idempotent matrix over R has a charateristic vector.

Proof Suppose that we have (a) and A is an n X n idempotent matrix, then there is
an invertible matrix Q with QAQ™! = diag{es,...,en}. Let a = (1,0,...,0)t, then a
is completable. Further, QAQ 'a = e;a. Set 8 = Q la, then 3 is completable, and
AB = e;3. Hence A has a characteristic vector.

Suppose that we have (b) and A4 is an n x n idempotent matrix. Assume that (a) is
true for all idempotent matrices of size < n. If A = 0, there is nothing to prove. Assume
that A # 0. Let a be a characteristic vector of A and Aa = eja. Set /1 = a. Let
B1,B2, ..., 8, be a basis of R". Employing the basis f;, 85, ..., B, of R™, the matrix A has
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the form

€1 daiz ‘- Qin Az Q23 "'+ Q2pn

0 azz -+ azn azgz asz ‘' A3n
A = . . . B=

0 a2 - Gun Qp2 Qp3 '+ Gpn

Since A? = A;, we have e} = ey, then B? = B. By the induction hypothesis, the matrix
B may be diagonalized under a suitable similarity transformation. Thus by a suitable
change of the basis, we may assume that we have chosen a new basis a;, a3, ...,an of R™
such that, relating to this basis, A has the form

€1 b2 b3 bn
0 e O 0
A2 = 0 O €3 0
0 0 O en
Since A2 = A,, we have €2 = ey, ..., €2 = e,, and by(e1 +e2—1) = 0,..., bu(e1 +en — 1) =0.

Let P = I, + E12+- - -+ E1n, where E;; is an n X n matrix whose only nonzero entry euqals
to 1 and is in (¢, j) position. Where 7; = b;(1 — 2¢;), then PA, P~ = diag{ey,ez2,...,en}.
(]

The next theorem generalizes Theorem B to APT rings.

Theorem 5 Let R be an APT ring and A be an n X n idempotent matrix over R. Then
(a) There is an invertible matrix P with PAP™! = diag{a;, az, ..., a,} where a; divides
a;ipy for1 <i1<n—-1.
(b) If Q is another invertible matrix with Q AQ ! = diag{b1, by, ..., b, } where b; divides
b;y1 for1<i<n-—1, thenb; =q; for1 <1< n.

Proof Suppose that P is an invertible matrix with PAP~! = diag{es,...,en}, Let a1 =
1-(l—e1)(1—e2)---(1—en)and z; = ei+(1—e1)(1—ez)---(1—es), then a1z; = e; and
I(z4,...,2,) = R,ie., 21,..., 2, generate R. By Theorem 2, X = (21, ..., z,,) is completable,
so X is a characteristic vector of A. Then, in a fashion analogous to the proof of Theorem
4, we have that A is similar to diag{ai,ej,...,e,}, by induction on n — 1 (the size of
the matrix). Assume that A is similar to diag{a;, as,...,a,} where a; divides a;;; for
2 < i < n-—1. Since a; divides each entry of diag{e,...,en}, and diag{ay, as, ..., an} is
similar to diag{ey, ..., e}, we have that a; divides a;. This completes part (a).

To show (b), observe that a, divides the products of arbitrary r entries of diag{a1, az,...,an
so a, divides the product of any r entries of diag{by, bz, ...,b }. Since b; is idempotent and
bi|biz1, by = b1bs---b,, so a,|b,. Similarly, b, |a,. Since a, and b, are idempotents, we have
a =b.,1<r<n O

Proposition 6 Let R be an APT ring, and P be a nonzero finitely generated projective
R-module.

(a) There exist nonzero idempotents ey, es,...,e, of R such that e; divides e;y, for
1<i<n—-1and P~ Re; ® Rea @ --- @ Rey.
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(b) If there are other nonzero idempotents fy, fa, ..., fm of R such that f; divides f; 1,
forl1<i<m-land P~Rfi®Rfs® - ®Rfn,thenm =nande; = f; for1 <i< n.

Proof For an arbitrary projective R-module P, there is an idempotent matrix A € M,(R)
such that P is isomorphic to the image of the R-linear mapping f : R® — R® which is
defined by f(a) = Aa for any column vector a in R®. By the above theorem there exists
a basis ap,as,...,a, of R’ such that Aa; = e;a; for idempotent element e; such that e;
divides e;41 for 1 <7 < s — 1. So P is isomorphic to Re; ® Re; @ - -- ® Re, which is the
image of f. Assume that n is the largest index such that e, # 0, then (a) is proved.

To show (b), Let B = diag{f1, f2,--., fm}, then B is corresponding to P in the same
fashion as the above, then by 1.2.1 of [1] B is 0-similar to diag{e1,e2, ..., e, }, which means
there exists a surfficient large positive integer k such that

diag(ey, ez, ..., en, Op—pn) =~ diag(fi, f2, -, frmr Ok—m)-
By (b) of Theorem 5, m=nande; = f;for1<i<n. O
Corollary 7 If R is an APT ring, then R™ ~ R™ @ K implies K = 0.
Proof It follows from Proposition 6. O

Theorem 8 Let R be an abelian ring, I be a nilpotent ideal of R. Then R/I is an APT
ring if and only if R is an APT ring. ‘

Proof Suppose that R/I is an APT ring. Let f: R — R/I; » — 7 = f(r) be the
natural morphism. The “bar” notation will also be used for all vectors € R and allnx n
matrices in M,(R). :

Suppose that A is an idempotent matrix in M,(R). Let A = f(A). Then 4 is
idempotent in M, (R/I). So A is similar to diag{a,as,...,a,}, where a; divides @;;;.
Since I is a nilpotent ideal, by 27.1 of [6], all the idempotents in R/I can be lifted modulo
I. So there is an idempotent d in R such that f(d) = @. By Theorem 4, A has a
charateristic vector Z = (Z1,%3,...,Z,)¢ corresponding to @ = d. Let z; be in R with
f(z:)) =%, 1 <i<n Setz=(21,23,..,2,)%, then since Z is completable to X in
GL,(R/I)and f: GL,(R) — GL,(R/I) is surjective, z is unimodular and completable.
Then Az = dz + r, where r = (r,72,...,7,,)" with #; € I. Since A2 = A and &% = d,
Az =dAz + Ar and (1 - d)d = 0, Ar = (1 — d)Az = (1 — d)(dz + r) = (1 — d)r. Thus

Alz+(2d-1)r)=Az+ (2d-1)Ar=dz+r+ (2d-1)(1 - d)r
=dz +dr = d(z + (2d — 1)r).

Further, z + (2d — 1)r = z(modI). Hence, as the above, z + (2d — 1)r is unimodular and
completable. Thus A has a characteristic vector. By Theorem 4, R is an APT ring.
Assume that R is an APT ring and A = (4)? = (a@;;) € M,(R/I). It is surfficient to
prove that there exists an idempotent matrix F = (f;;) € M,(R) such that F = A. If
A = (a;j), then A? = A+ B, where the entries of B are in I. Thus B is a nilpotent matrix.
Let k be the least natural number such that B* = 0. If k¥ = 1, there is nothing left to
prove. Assume that k > 1 and let C = A+ (I — 2A4)B. Then the entries of C — A are in

— 925 —



I, and since AB = BA = A% — A%, C? = A% + 2A(I — 2A)B + (I — 2A)? B%. Therefore,
C?—-C = B+ (I-2A)*(B?- B). Since (I —24) =I+4B,C? = C + B*(4B - 3I). Let
D = B?(4B - 3I), then C? = C + D where the entries of D are in I, and for some natural
integer I < k, D' = 0. Repeating this process, we arrive in a finite number of steps at the
required matrix F. O

Corollary 9 Let I be a nilpotent ideal of an APT ring R and let 1,22, ...,2; be inde-
terminates. Then R[zy,23,...,2,] is an APT ring if and only if (R/I)[z1, 23, ...,2k] is an
APT ring.

Proof The corollary follows by observing that I[z;,zs,...,2;] is a nilpotent ideal in
R[:cl,,zz,...,:ck] and that R[zy,22,...,2k]/I[21,22, ..., 2k] (R/I)[a:l?zz, o @g]. O

Theorem 10 If R is a separative abelian regular ring, then R is an APT ring.

Proof By Theorem 2.5 in [4], every square matrix over R admits a diagonal reduction
(i-e., there exist invertible matrix P and Q such that PAQ is a diagonal matrix). Sup-
pose A is an idempotent matrix, by Theorem 1, A is similar to a diagonal matrix whose
diagonal entries are idempotents of R. So R is an APT ring. O
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