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Bifurcation of A Class of Reaction-Diffusion Equations *
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(Dept. of Math., Shanghai University, Shanghai 200436, China)

Abstract The paper deals with one important class of reaction-diffusion equations,
u' + p(u—u*) = 0(2 < k € Z*+) with boundary value condition u(O) = u(x) = 0.
Singularity theory based on the method of L-S (Liapunov-Schmidt) is applied to its
bifurcation analysis. And the satisfactory results are obtained.
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1. Introduction

One class of reaction-diffusion equation ([2], [7]) is read as,
F(u,p) = u" + p(u—u¥) =0 (1.1)

with boundary value condition
u(0) = u(r) = 0, (1.2)

where u is a parameter and 2 < k € Z*.

Singularity theory ([3], [5], [6]) plays an important role in static bifurcation analysis
of nonlinear problems with some parameters. By using this theory, we obtain satisfactory
results of (1.1). In details, we divide the paper into two sections apart from this introduc-
tion. In section 2, we apply L-S reduction ([1], [3], [5], [6], etc) to (1.1) at the bifurcation
point (u,u) = (0,n?) to get bifurcation equation. Section 3 is devoted to the bifurcation
analysis of the bifurcation equation obtained in section 2 for the cases k = 2,3. With the
increase of the exponent k of u, it is more and more difficult to deal with its bifurcation.
Many efforts were made to study the bifurcated phenomenon of (1.1) and (1.2) for k > 4

in [4].
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2. L-S Reduction

Let X = {u|u € C?%0,7],u(0) = u(7) = 0}, Y = C°[0, x]. We define inner products on
these spaces by (u,v) = [J u(€)v(£)d€. Then F(u,pu) is a map from X x R onto Y. For
every , (1.1) has a trivial solution u = 0, i.e., F(0,pu) = 0.

Consider the linearized equation of (1.1)

D, FO,pv=v + v =0 (2.1)
with boundary value condition
v(0) = v(7) = 0. (2.2)

It is easy to show that (2.1) and (2.2) has nontrivial solutions v = c¢sinnz(c is an arbitrary
constant) iff p = p,, = n?(n € Zt), and that (2.1) and (2.2) has trivial solution if p # p,.

Let L, = (dF)on2) = j‘% + n?, ker L, = span{sinné} = span{e}. It is known to us
that L, : X — Y is a Fredholm operator of index zero ([3]). Also, we know that L, is a
self-adjoint operator, i.e. L} = L,,. Now we can split the domain of F into

X =kerl,® M, Y = N @rangel,,

where M = (kerL,)t, N = (rangeL,)'(= kerL} = kerL,).
Let P, be the orthogonal projector from Y onto rangeL,,, which is Pou = u—(u,e)e,u €
Y. By L-S reduction, (1.1) is equivalent to

P.F(v+w,u)=0, ve€kerl,, weM (2.3)

(I - P)F(v+w,u) =0. (2.4)

Equation (2.3) is solved for a unique w(v, p)(w(0,n%) = 0) by implicit function theorem
(for instance, see [1]). Substituing w(v, u) into (2.3) yields

(I = Pe)F(v + w(v,p),p) =0, (2.5)

which is called the bifurcation equation.
Taking the inner product of (2.5) with e and letting v = ze, we have

(e, P.F(ze + w(z,u),u)) = 0. (2.6)

(2.6) is also called the bifurcation equation of (1.1) at (u,u) = (0,n?). Since we cannot
find the expression of w(z, 1), hence, it is impossible to find the solution to (2.6). In next
section, we deal with its bifurcations by using the singularity theory.

3. Bifurcation Analysis

It is necessary to introduce some useful definitions and some important results([3], [5],
[6]) for our later discussion.

Let E; ,, = {glg : C> map from R? x R onto R on some neighborhood of (0,0)}. We
shall identify any two functions in E; , which are equal on some neighborhood of (0, 0).
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We call the elements of E, , germs. In fact , a germ is an equivalence class in E;,, with
respect to this identification. Obviously, E, ,, is a linear space.
Suppose
fz,p)) =0, (z,n) €U XV CR?, (3.1)

where f € E, ,, (0,0) € U x V and f(0,0) = £,(0,0) = 0, i.e., (0, 0) is a singular point
of f.
For f,h € E, ,, we shall say that f and h are equivalence if

f(z, 1) = S(z, p)h(U=, 1), (3-2)

where Q(z,p) = (X (=, 1), A(p)) is a C* diffemorphism on the neighborhood of the origin,
S(z,u) € E,, and X(0,0) = A(0) =0, A’(0) > 0, X.(0,0) >0, S(0,0) > 0.If A(p) = p,
then we say that f and k are strongly equivalence. The fact that f and h are equivalence
implies that

(1) f and h have same singular points.

(2) ng(p) = nn(A(p)) (ng(p) denotes the number of solutions of f(z,u) = 0).

(3) The stability of the equilibrium solution of £ = g(z,u) is the same as that of
¢ = h(z,p).(The reason is X, > 0, S > 0 at some neighborhood of the origin.)

The following theorem is important (See, for instance, (2], etc).

Theorem 3.1 A germ f € E, , is strongly equivalent to ez® 4+ Spz iffat ¢ = p = 0,

f=fom=fu=fu=0 (3.3)

e =sgnfye, § =sgnfa,. (3.4)

For small k, the bifurcation of 2 = ez* + fuz at (z,u) = (0,0) is known to us. For
example,

(I) (z,u) = (0,0) is a transcritical bifurcation point of ¢ = —z% + pz, its bifurcation
diagram is Fig.3.1.

(I1) (z,u) = (0,0) is a pitchfork bifurcation point of & = ~z> + pz, its bifurcation
diagram is Fig.3.2.
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Fig.3.1 Transcritical bifurcation diagram Fig.3.2 Pitchfork bifurcation diagram

— 49 —

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



Assuming v; € R*(: = 1,2,---, k), we define

0

9 k
(de)(y,a)(vl’ ey vk) = E e —at—kG(y + ;tﬂ){, 0‘)|t1=---=tk=0-

Obviously, (de)(y,a) is a symmetric, multilinear function of k arguments.
Now let us compute the partial derivatives of g(z,u) defined by (2.6).

gz = {(e,dF(e + wz)),

g2 = (e,dF(wgz) + d*F(e + wg, e + w,)),
gzs = (€, dF(w,3) + 3d*Fe + wa,wy2) + d°F(e + we, € + ws, e + ws)),

gu = (e dF(w,) + Fu),
gop = (e, dFu(e + wz) + dF(wzy) + d2F(e + Wz, wy)),

We rewrite (2.3) as
P.F(ze + w(z,p),p) = 0.

Differentiating (3.11) with respect to z and g leads to
P.dF(e+ w;) =0,
Pesz(e + wg, e+ wg) + PedF(w,2) =0,

P.dF(e + ws, e+ wy,e + wg) + 3P.d*F(e + wg, wy2) + PedF(wys) = 0,

P.dF(w,) + P.F, =0,
P.dF,(e + w;) + PedF(wz,) + P.d*F(e + wz,w,) =0,

(3.5)

(3.6)

(3.7)
(3.8)

(3.9)
(3.10)

(3.11)

(3.12)

(3.13)
(3.14)

(3.15)
(3.16)

The partial derivatives of F(u, ) (given by (1.1)) with respect to u and u at (0,n?)

are obtained,

2

(sz)(O,nz)(Elv 62) = 8t?8t2 [t]_fl“ + tzfzu + ;lz(tlfl + t2by — (t1£1 + tzfz)k)“tl =t3=0

_ { ~2n2618y k=2

0 k> 2,
0 k=2,
(B F)(0,n2)(£1,62,63) = —6n%816283 k=3,
0 k> 3.
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Let (3.12) evaluate on (0,7n?), then P.L,(e + w;(0,n?)) = L,w,(0,n?) = 0. It follows
that

wz(0,n?) = 0. (L, : M — rangeL,, is invertible.) (3.19)
Using (3.6) and (3.19), then
9z(0,n%) = 0. (3.20)
Applying (3.13) evaluated on (0,7n%) and substituting (3.19) into (3.13) leads to
~L;}(-2n?)P.e? k=2
2y _ n €
w,2(0,n%) = { 0 k> 9 (3.21)

Let (3.7) evaluate on (0,n?) and substitute (3.17), (3.19), (3.25) into (3.7), then

(e, Ln(2n?)L 1 P.e? — 2n%e?) k=2

gxz((],‘nz) = 0 E>2
P () e N (3.22)
- { 0 ’ k> 2.

From (3.14), (3.18), (3.19) and (3.21), we can obtain

12n*L7Y(P.(eL; P.e?)) k=2
w,a(0,n%) = { 6n’L;Y(P.e?) k=3 ’ (3.23)
0 k> 3.

Let (u,u) = (0,n%), apply (3.17) and (3.18), and take (3.19), (3.21), (3.23) into (3.8), we
can get :
(e,—12n%e(L;  P.e?)) k=2
(e, —6n%e3) k=3
k>3

gz3 (01 n2)

0
5mrn? .
{ niseven L _, (3.24)
onutted n is odd

97rn k=3
4

0 k> 3.
From (3.15), we can get P.L,w,(0,n?) =0, i.e.,

w,(0,n%) = 0. (3.25)

Also from (3.16), we can get w,,(0,n?) = 0. It immediately follows that

. T
g#(O,n2) =0, gzp(O,nz) = {e,e) = 3

Now, let us summarize our results.
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Case 1 k=2(ne Zt)
0 . 2 8n T
1° nisodd. At (u,p) =(0,n%), g=9,=9,=0, g2 = — 5 $au = -

20 n is even. R
57n 7r
At (u,p) = (0,n?), g=go=g2 =g, =0, g5 = — 5 Jau = 5

According to theorem 3.1, we have

Theorem 3.2 Suppose k = 2 and n € Z*. If n is odd, then g(z, ) is strongly equivalent
to —z? + (u — n?)z. Furthermore, (u,p) = (0,n?) is a transcritical bifurcation point of

(1.1). The bifurcation diagram of 79—1:—' = F(u,p) at (0,n?) is similar to Fig.3.1. If n is
even, then g(z, ) is strongly equivalent to —2® + (u — n?)z. Furthermore, (u,p) = (0,n%)

is a pitchfork point of (1.1). The bifurcation diagram of ?9_1: = F(u, ) at (0,n?) is similar
to Fig.3.2.
Case 2 k=3(n€ Z%)
9nn? ™
At (uaf"') = (Oanz)’ 9 =9z =92 = Gu = Oa g3 = —T) Gzp = 5

Theorem 3.3 Supposek = 3 andn € Z*t. g(z, u) is strongly equivalent to —z3+(p~n?)z.

Furthermore, (u,u) = (0,n2) is a pitchfork point of (1.1). The bifurcation diagram of

%1;- = F(u,p) at (0,n?) is similar to Fig.3.2.
Till now, in this paper and [4], we have finished analyzing the bifurcations of (1.1) and

(1.2) for all positive integers except k = 1 which belongs to the trivial case.
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