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Abstract: In this paper, some counterexamples are offered to illustrate that some results
stated in a recent paper on the oscillatory behavior of solutions of second order nonlinear
difference equation are incorrect.
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1. Introduction

In a recent papert [1] the authors provided sufficient conditions for the oscillation of
all solutions of the perturbed difference equation

A(an—1(DYn-1)) + F(n,yn) = G(n,yn, Dyn),n > 1, (1)

where 0 < ¢ = p/q with p even and g odd integers (even/odd ) or p and ¢ odd integers
(odd/odd), {a,} is an eventually positive real sequence and there exist real sequences
{g»}, {pn}, and a function f : R — R such that

'uf(u) > 0 for all u # 0, (2)
f(u) = f(v) = g(u,v)(u — v) for u,v # 0, (3)

where g(u,v) is a nonnegative function; and
F(n,u) G(n,u,v)

) = i)

In some oscillation theorems of [1] for the case o= (even/odd), incorrect results about the
oscillatory behavior of all sollutions of equations (1) are stated. The aim of this paper is

< pp, for u,v #0. (4)
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to show this fact with some examples.
2. Main results

For simplicity, we list the conditions used in the main results of [1] as follows:

i(qn — Pn) = 00, (5)

Z(qn - pn) < oo, (6)
lim > [— S (q - 7 = o0, (7)

s=ng a, t=ny

nlirgloinf Z (gs — ps) > 0,for all large ny, (8)

s=ng
—_ - = — f tant K 9
Z[ . o 32: o0, for every constan (9)
nlinc}o sup Z (¢s — ps) = oo, for all large ny, (10)
nh_I’n sup Z ¢s — Ps) = 00, for all large nyg, (11)

=19
Z(qn — pn)R(n,np) = 0o, where R(n,ng) = Z — (12)
Z(qn — pn)T(n,n0) = co,where T(n,ng) = Z — (13)
<1,forn>1. (14)
An-1

The starting point of this paper is the following results proved in [1] as Theorem
2.1(b), Corollary 2.3(b), Theorem 2.4(b), Theorem 2.6(b), Corollary 2.8(b), Corollary
2.10(b), Corollary 2.12 (b):

Theorem 2.1 Suppose that (5) holds. If o =(even/odd), then every solution {y,} of (1)
is either oscillatory or {Ay,} is oscillatory.

Theorem 2.2 Suppose that (6) and (7) hold. If ¢ =(even/odd), then every bounded
solution {y,} of (1) is either oscillatory or { Ay} is oscillatory.

Theorem 2.3 Suppose that (8) and (9) hold. If ¢ =(even/odd), then the conclusion of
Theorem 2.2 follows.

Theorem 2.4 Suppose that (10) holds. If ¢ = (even/odd), then the conclusion of
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Theorem 2.1 follows.

Theorem 2.5 Suppose that a, = 1,0 > 1 and (11) hold. If 0 =(even/odd), then the
conclusion of Theorem 2.2 follows.

Theorem 2.6 Suppose that ¢ > 1 and (12) hold. If ¢ =(even/odd), then the conclusion
of Theorem 2.2 follows.

Theorem 2.7 Suppose that ¢ > 1, (13) and (14) hold. If o =(even/odd), then the
conclusion of Theorem 2.2 follows.
Now we offer some counterexamples to the above oscillation theorems as follows:

Example 2.1 Consider the difference equation
A(n(Ayn"l)a) + yn(b(n’yn) + 071) = b(n’yn)ynan 2 2)

where o=(even/odd) and b(n,y,) is any function of n and y,,, which also has been con-
sidered in [1].Let 6, = 1/n ,choosing f(y») = ¥, we have

F(n,y.) 1 1
- = b(n,yn) + = > b(n,yn) + = = ¢n,
flu) ™
and G, Yo, Dy) q
Ry Yn, DYn
—_—_—_—:bnﬂnsbnvn"‘_'—_g "y
) (m,9a) < b(n,yn) + -~ =p
Therefore we obtain 3.>(gn — pn) = 3. & = o0, i.e., condition (5) (and also (10)) holds.

So according to Theorem 2.1 (Theorem 2.1 (b)), a solution {y,} should be oscillatory
or {Ay,} should be oscillatory. But in fact, this equation has a solution given by y = —
Neither {y,.} nor {Ay,} is oscillatory.

Example 2.2 The difference equation

1
1/3(Ayn“1)2/3) + yﬂ»(b(nvyu) +

2
A(n1/3(n -1)

CERCEDIN

where b(n,y,) is any function of n and y,, has a bounded solution by y, = 3—}, which is
neither oscillatory nor {Ayr} is oscillatory, i.e. the conclusion of theorem 2.2 is violated.
But we observed that every condition of Theorem 2.2 is satisfied. In fact, by taking

F(yn) = yn, we have

F(n,y,) 2 92
_"_—:bnyn +m2bn’n+m§qn7
faw) - En e T 2 T .
and
I B0) _ 1, 1,) < bim, ) + o =
Fyn) AR TS DS
Therefore we obtain
ad 1
kz:;, Z (k& + 1 n =
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and lim,, o inf 3°7_, (¢, — p,) > 0, for all large no,

SIE Y @-rl = Y

s=ng as t=s+1 s=ng 33(3 - 1)3 - %
1)1/2 oo 1
> —

i.e., condition (6) and (7) hold.
Example 2.3 Consider the nonlinear difference equation
A3 (n — 1)2(Ayn_1)?) + 2 (b(n, ya) + n°) = b(n, y,)yo,n > 2 (16)

where b(n,y,) is any function of n and y,,. We claim that all conditions of Theorem 2.3
(Theorem 2.4(b)[M) are satisfied. But the conclusion of theorem 2.3 does not follows.

Because this equation has a monotone solution given by y, = —%. Now we verify that
conditions (8) and (9) hold. By taking f(y.) = ¥, we get
F(n,y,) 5 n®
=b(n,yn) + n° > b(n,yn) + — = ¢n,
) (n,yn) (myn) + 5
and ( Aga) s
G Ny Yn, LYn n
—'—_—:bn)ngbnyn'*"—s n.
o) (7 9n) < b(nyyn) + - =p
So we have

©x 14 = & oL
dl=- = (g —p)) =) [33(3 —1)2 33(31”‘ 1) tgr;o tz]

K ad 1 s
SR Rr e D N Y
%) K e 32
=X ey Yoy

i.e., conditions (8) and (9) hold.
Example 2.4 Consider the difference equation

A4 V) + 83060 3) + e pye) = Mg 22 (1)

where b(n, y,) is any function of n and y,,. Obviously a, = 1 and =1, i.e. condition

an-1
(14) holds. Now we verify that conditions (11)-(13) hold. By taking f(yn) = y3, we obtain

F(n,yn) o 4n? n n? _
’——’f(yn) = b(n,y.) + (n+1)2(n - 1) > b(n,y,) + (n+1)%(n —1)? = qn,
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G(n7 Yn, Ayn) n?
—————" = b(n,y,) < bn,y, = pn.
F(wn) (n Yn) (n Yn) + 2(n + 1)2(n — 1)2 p
Hence
S sla-p)= Y o S - S
$\4s —Ps) = > ryaererT s L aT T = 09,
8=ng s=ny 2(3 + 1)2(8 - 1)2 s=ng 2(3 + 1) 8=nyg 2(8 + 1)2
i.e., condition (11) holds. In view of
n 1 n—1 1
R(n,no) = Z a—,T(n,no) Z p and a,_; =1,
s=npg 8 s=ngp 8

we get

o0 [o.¢]

o 3 n%(n — no) (n — no)
E(Qn — Pn)R(n,no) = Z 2n + 1)2(n — 1)2 2 2 m

o (o0}

1 1
:Zm—(no+l)2m=m,

and also one can obtain -

Y (gn — Pn)T(m,m0) = o0,

i.e., conditions (12) and (13) hold. So all conditions of Theorem 2.5 (Corollary 2.8(b)[1]),
Theorem 2.6 (Corollary 2.10(b)[!)) and Theorem 7 (Corollary 2.12(b)!!]) are satisfied. But
the conclusions of these theorems do not follow. Because equation (2.17) has a monotone
solution given by y, = 1/n.
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