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Abstract: Here concerned is a certain kind of non-standard measure defined on the
n-dimensional Euclidean space *(R"), which (with n = 1) can be used to show that any
standard linear point-set or the usual ordered field R of real numbers is of measure zero.
The proposition just mentioned is basically consistent with Poincaré’s famous remark
which renders a deep insight into the paradoxical structural nature of Cantor’s contin-
uum consisting precisely of all distinct real numbers.
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1. Introduction

Poincaré’s remark is concerned with the nature of Cantor continuum of real numbers
(positional points of the line) and also with Cantor’s cardinality formula 2% = ¢ for the
continuum of real numbers. It was mentioned in B. Russell’s classic book, The Principles
of Mathematics ([5], p.347), and it reads as follows: “The continuum thus conceived is
nothing but a collection of individuals arranged in a certain order, infinite in number, it
is true, but external to each other. This is not the ordinary concept, in which there is
supposed to be, between the elements of the continuum, a sort of intimate bond which
makes a whole of them, in which the point is not prior to the line, but the line to the point.
Of the famous formula 2% = ¢, the continuum is unity in multiplicity, the multiplicity
alone subsists, the unity has disappeared.”

As one may see it clearly, the first and third parts of Poincaré’s remark agree sub-
stantially with Aristotle’s viewpoint: “Real numbers (with multiplicity in nature) cannot
create a continuum (with unity in nature), since distinct numbers don’t touch (connect)
each other (or in other words, they are external to each other).” (cf.[1],[5],(6]).
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The second part of remark requires a little more explanation. It is evident that a
line (namely, the linear continuum) may have distinct positional points (namely, various
point-positions), and the point-position as a concept, can only possibly be assigned with
regard to a certain given line. In other words, the point concept is derived from the line.
This is why Poincaré remarked that the line is prior to the point, and not conversely.

As having been observed before, Poincaré had already realized that distinct positional
points (just corresponding to distinct real numbers in accordance with Cantor’s axiom)
alone cannot generate a line (continuum), and that the continuum as a unity could only
be created with the aid of the so-called “intimate bond” which could make a whole of the
points into the line. But, what is the intimate bond?

Intuitively, the intimate bond should be something that is capable of connecting all the
positional points into the whole line, and thus creating the continuity nature of the line.
As one sees, in the word of nonstandard analysis, any two monads or haloes of hyperreal
number are equal or disjoint and the halo has no bound. The haloes revealing aesthetic
feeling in images are similar to the “intimate bonds” in Poincaré’s mind by which the
multiplicity is “softened” into a unity. Giving the rein to one’s imagination, Cantor’s
continuum turned out to be Leibniz’s continuum. In nonstandard standpoint, it is well
known that the interval [0,1] in R is a discrete positional point set embedded in hyperreal
number field *R. Thus it is interesting to reckon that the standard interval [0,1] is of some
nonstandard measure zero in a still greater universe of discourse, *R.

The studies of nonstandard measure theory begin with Robinson’s work!4!, which con-
tinues to use the traditional standard Lebesgue measure ideas. Bernstein and Wattenberg!”
developed the mode of finite thinking and so obtained Lebesque measure on *[0,1] with
the aid of counting measure on a hyperfinite subset of *[0,1]. Loeb ([8],[9]) showed how
convert an internal finitely additive measure space into a standard o-additive measure
space. These constructions of measures and others play important roles in different stages
of nonstandard mathematics. All the work has established the representation of standard
Lebesgue measure. Using the similar idea as that invented by Dedekind for creating the
“continuous” structure of R by means of introducing irrationals into R via Dedekind’s
cuts of the set of rational numbers, C.G.Huang has just recently succeeded in producing
a proof, based on a kind of extended Dedekind section, for the existence of the indivisible
continuum of Pythagoras, Democritus, Pluto and Galileo (cf.[3]). He has also shown that
the set of real numbers is of measure zero in accordance with a kind of measure introduced
by himself.

As is mainly inspired by Poincaré’s remark, our present paper will expound a new kind
of nonstandard measure, so-called hyperstandard measure on *(R"). In particular it can
also be employed in proving the zero-measure property of R. Our basic idea consists of
the following essential points. (i) An enlargement implies some hyperfinite represention of
each standard set; (ii) It is permissible to use internal (not being *-standard) infinitesimal
intervals as covering sets of the sets in question.

Though the reader is assumed to be familiar with basic ideas and terminologies in
nonstandard analysis (cf.[2],[4],[6]), some related results will still be given briefly for con-
venience to quote.
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2. Preliminaries

Throughout the paper we work with a superstructure V(*R) which is k-saturated,
where & stands for an uncountable number. Suppose that card(V(R)) < &, so that V(*R)
is also an enlargement of the superstructure V(R). This implies the next well-known
result.

Theorem 2.1 For any standard set A € V(R) there exists a hyperfinite set F C *A such
that F contains all standard elements of *A; that is, we have {*ala € A} C F C *A.

3. A kind of nonstandard measure on *(R")

In the classical Lebesgue measure theory on the n-dimensional space R"™, it is allowed
to make use of countable infinitely many open intervals {I;}( € N) with non-negative
volumes as covering sets for any given set F in R, where

I = B{alal® <2 <80, k= 1,2, ,n; af <0},

and the volumes of intervals I; are given by

L) = H( p\d) _ (*’))-

k=1
The basic principle to be used for computing Lebesgue measures is the so-called axiom of
o-additivity.

In our case for treating a new kind of non-standard measure on *(R"), it requires to
make use of infinitely many (internal) open intervals {I;} as covering sets of E in *(R"),
where ¢ ranges over all the natural numbers of *N (if necessary, by setting I,, = @ for
n >, € *Ny ), and moreover, every open interval may have infinitesimal volume.

Definition 3.1 Given any set E C (*R™), which may be internal or external. Suppose
that {I;} is an infinite sequence of pairwise disjoint open intervals of (*R") and that

U L2E.

ie*N
If, in particular, I, = 0 for all n > Q with Q € *N,{I;} contains hyperfinitely many
intervals. Let the volume of I; be denoted by

ML) = ﬁ(bg) -
k=1

where a,(:),bg) € *R,a,(:) < b,(:). Then the number defined by
uy (E) = inf{st[ Yo XINEC U L}
i€E*N i€*N
is called the outer hyperstandard measure of E, or simply outer h-measure, where we

define the mapping .
st:"R— R=RU{—00,+00}
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by the following
st(z), ifz € G(0) = {y € *Rly ~ 0}

st(z) = { +oo, Ifz is positive infinite
—oo0, if z is negative infinite
Some properties of the outer h-measure follow from Definition 3.1.

Theorem 3.2 (i) 0 < yjf (E) < +oo for all E C *(R"),

(ii) 17 (0) = 0,
(iii) 4if (A) < i (B) if AC B C ("R™).

Definition 3.3 Let E be a *-bounded set in *(R") and let I be any interval in *(R")
such that I O E. Then

#y (B) = st(MI)) = u (I\E)
is called the inner hyperstandard measure of E, or simply inner h-measure.

Definition 3.4 A *-bounded set E C *(R™) is said to be h-measurable if wf (E) = py, (E).
In this case we denote
pr(E) = pf (E) = py, (B),

and call it the hyperstandard measure of E, or simply h-measure.
For a *-unbounded set E C *(R™), it is h-measurable if E NI is *-bounded and h-
measurable, where I is any open interval in *(R").

Remark 3.5 It is obvious that the present defintions in *(R") are consistent with the
standard notions of Lebesgue measure in R". '

Consequence 3.6 Definition 3.3 implies
w7 (I\E) = stA(D)] - it (B).
If E is h-measurable, then uj (E) = pf (E). Thus we have
ui (I\E) = stA(D)] - i (B) = i (1\E).

This shows that the set T\ E is also h-measureable, and

pn(E) + pu(I\E) = st{\(I)].

4. A proof that R is of h-measure zero

In particular, for the linear sets in * R, it is easy to show that pp(*[0,1]) = st[A(*[0, 1])] =
1 and ;i (*R) = +oo. But we are able to prove pn(R) = 0. For this purpose, let us first
establish the following

Proposition 4.1 Let F C *R be any hyperfinite set. Then we have pi(F)=0.
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Proof Let F be denoted by
F = {3112:2,""239};
where the elements are arranged in its usual ordering * <. We use |F| to denote the

internal cardinality  of F. v
Assume that € *N, (it is trivial if Q is finite). Let

20 (25 = 2j-1) = d,

and suppose that ¢ is any positive infinitesimal in *R such that ¢ < d. Let I; be defined
by

€ €
. = 1T Al Al = 12a"'1 .
I =(z q° + Q) i=1 Q
Evidently, {I;} is a pairwise disjoint family of sets and
U L2F
1<i<Q

Consequently we have

0 < uf(F)< st(fj M) = st(a%e)_: st(2¢) = 0.

=1
This proves that pf(F) = 0. O
Proposition 4.2 We have ux(R) = 0.

- Proof It suffices to consider the linear set [0,1] C R, and show that ([0, 1]) = 0.
By Theorem 2.1, there exists a hyperfinite set F such that

[0,1] C F C *[0,1].

It is immediate from Theorem 3.2 and Proposition 4.1 that pr ([0,1)) < pf(F) = 0, and
so that 4} ([0,1]) = 0. Clearly, from Definition 3.1 we have y;t([0,1]) > #5 ([0,1]), and
consequently, p; ([0,1]) = 0. Hence we may infer that u;,([0,1]) = 0. O

Remark 4.3 All what we have expounded in this paper is the basic proposition that R is
a discrete structure embedded in *R, so that the h-measure of R is zero. The proposition,
to a certain extent, is similar to the situation for the set Q of rational numbers, which is
an obvious discrete structure embedded in R, with Lebesgue measure zero.

But why should we all believe in the Lebesgue measure theory so that [0,1]\Q is of
measure 17 The simple reason may be that, in the classical analysis working with R,
the universe R of discoure is too narrow to squeeze Poincaré’s so-called “intimate bond”
of real points in it. So one can only do his best by making use of at most countably
infinitely many intervals of positive real lengths (volumes) (not being infinitesimal) as
covering sets. In fact, the analytic tools for measuring sets in the Lebesgue case cannot be
further refined anyway without appealing to the nonstanded infinitesimal analysis. The
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present investigation once again shows that the structure of *R(*(R")) filled with “ideal
elements” or intimate bond is far more rich and ingenious than that of R(R"), so that
much more delicate measuring technics (apart from the powerful Loeb measure theory on
an internal set X, etc.) could still be constructed for the sets of *(R").

Note added The main result of this paper was reported at the International Symposium
on Analysis, Combinatorics and Computing (Dalian) on August 5, 2000.
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