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C*® Compactness for a Class of Riemannian Manifolds
with Parallel Ricci Curvature *
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Abstract: In this paper we prove that the set of Riemannian manifolds with parallel
Ricci curvature, lower bounds for sectional curvature and injectivity radius and a upper
bound for volume is ¢® compact in Gromov-Hausdroff topology. As an application we
also prove a pinching result which states that a Ricci flat manifold is flat under certain

conditions. .
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1. Introduction

In this paper we consider n—dimensional closed Riemannian manifolds. Suppose M
is such a manifold. The sectional curvature, Ricci curvature, injectivity radius, diameter
and volume of M are denoted by k(M )Ric(M),i(M),d(M)and V(M) respectively. The
Riemannian curvature tensor is denoted by Rm. The well-known convergence theorem
says that the set of manifolds satisfying the bounds

Ik(M)] < K, V(M) > V,d(M) < D

is ¢* compact. The c* version of this Cheeger-Gromov compactness theorem then states
that the space of manifolds satisfying the bounds

|V/Rm| < A,j < k, V(M) >V,d(M)< D

is c**1 compact. Where |V7 Rm)| is the point-wise norm of the j—th covariant derivative
of Rm. We will study ¢* compactness for certain manifolds. We say that a set of manifolds
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is ¢™ compact, if given a sequence of M; in this set, there are a subsequence which is also
denoted by {M;}, a manifold M (belonging to this set), a sequence of diffeomorphisms
fi : M — M;, such that {f’g;} converges to g in c* topology for every k. Where g; is the
Riemannian mertic on M;,g is a Riemannian metic on M.

Let I'(n, A, i, V) be the class of n—dimensional(n > 3) closed Riemannian manifolds

satisyfing

VRic = 0, (1)
k(M) > A, (2)
z(]M) > 1o, (3)
V(M)<V. (4)

Then we have

Theorem 1 T'(n,A,ip,V) is ¢ compact.
As an application of this theorem, we have

Theorem 2 For every n and a positive real number iy and a real number A, there exists
a poisitive real number ¢(n, i) such that the n—dimensional closed Ricci flat Riemannian
manifolds satisfying

|VRm| < &(n, A, i0), k(M) > A, d(M) = 1,i(M) > io

must be flat.
This result may be compared with rigidity theorems in [6],[7].

2. Preliminaries

Suppose M is a closed manifold of dimension n. {wy,---,w,} is the dual orthonormal
cotangent frame. We have the structure equations:

dw; = —Zwij A wj,
J

dwij = =Y wik A wij + Quj,
k

where Q;; = % Y-k Rijriwr Awi, Rijr is the component of Riemannian curvature tensor.the
indexes range from 1 to n. The component of Ricci curvature tensor R;; is defined by

> Riaj.

The covariant derivative is defined by
Z Rijpwr = dR;j — Z Ronjwmi — Z Rimwmgj,
k m m

VRic = 0 means R;j; = 0 for all 4,5, k.
The covariant derivative of curvature tensor is defined by

Y Rijitmwm = dRijit = Y Rnjriwnm — Y Rinkiwnm — 3" Rijuiwnk — Y RijknWnm.
m n n n n
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Similaryly, one can define the higher order covariant derivative. We have the Ricci identity
11121314 ,3516 -, 3rN. Rilizisiq 1616, iemm = Z Ril,---,ij_lri,'+|,---,i,- Rri,’mn- (5)
rj
If VRic = 0, we have(cf.[8])
E Rijktmm = 2 Z(thkthtlm + Ritim Rhjim + Rijhm Rhkim)+

nm

> (RijenRut — Rijim Rit). (6)

h

More generally,we have(r > 5) .
> Rijigipmm = O (Rigig nipyiom — Riyig,oip_ymiy Jm+
m m
D (R ymiym = Riy oo ymemi, ) + (] Ri oy camm iy (7

These equations, combined with the following Sobolev inequa.lity, will be used to esti-
mated the point-wise norm |V/Rm)|, where |[V/Rm|? = 7, . i R? .. .ij+¢s- The Sobolev

inequality(cf.[9],Appendix 2)states that, if Ric(M)d?(M) > p, then there exists a positive
number v = y(n,d(M), p), such that, for n > 3,

171l 22 < V(M) =[ylldflla + [If]l2], V£ € WhH(). (8)

3. Proofs of theorem 1 and theorem 2

First let’s introduce some lemmas.
Lemma 1 If M € T'(n,A,i,V), then k(M) < (n - 1)x?/i ~ (n - 2)A.

Proof Since k(M) > A, we only need to prove that Ric(M) < (n — 1)x? /3. This follows
from a Jacobi field argument. Choose orthonormal frame {e;j,e;,---,e,} at p € M.
We will prove that Ric(ej,e1) < (n — 1)x?/i]. Let y(t) = exp,(te;) be the geodesic
which is minimal when ¢ € [0,%0]. Put U;(t) = sin(Jt)ei(t). Where e;(t) is the parallel
translation of e; along v, 2 < 7 < n. Let /;(s) be the length of the curve o;,, where
0is = exp. ) sUi(t),t € [0,40]. Since 7yljp;,) is minimal, If(0) > 0. So by the second
variation formula of arc length, we have

n

05 3 1(0) = 3 [0 - (R, Uy

= Z/O{Lcos —to — sin —toRlC(“)’ ¥)}dt

1=2

= -[(" )—; — Ric(er, e1)].
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Where we have used the fact that Ric(§,7) = Ric(e1,e1), which is guaranteed by the
condition VRic = 0. Since e; is a arbitrary unit vector, we are done.

Lemma 2 If M € I'(n, )i, V),then v(M) > v(n,i),d(M) < D(n,i,V),where v(n, i)
is a constant depending only on n,iy. D(n,ip,V) has similar meaning.

Proof Vp € M,V (M) > volB(p,io), where B(p,io) is the geodesic ball with center p and
radius io. It follows from [10]that volB(p,ip) > v(n,i). So the first assertion is settled.
The second assertion follows from a simple packing argment. Suppose 24y < d(M) <
2(k + 1)ip,k is a nongetive integer. Choose z,y € M such that the minimal geodesic
connecting z and y has length d(M). There are points{;, 23, -, Zx41} on this geodesic
such that the distance between z; and z; is 24 for ¢ # j. So B(z;,40) N B(zj,i0) = ¢ for
i # 7. then we have '

k+1
V > V(M) > volB(zi,i0) > (k + 1)v(n,i0).
‘ i=1
This yields d(M) < 2(k + 1)ip < 240V /v(n,%0).
Now it follows from lemma 1 and 2 that T'(n, A, o, V) is ¢!'* compact. Also, I'(n, A, 0, V)
contians only finitely many diffeomorphism types of manifolds. We are now going to prove
that T'(n, A, i, V) is ¢ compact.

Proof of Theorem 1 We only need to prove that |[V/Rm| < ¢; for every j. Where ¢;is a
constant depend only on 7, \, 40,V and j. For j = 0, lemma 1 gives us the bound. Applying
Stoke’s formula on $A|Rm|? = —|VRm|* + ;14 Rijkt Rijhimm We have Jar |[VRm|? < dy.
Where A = —trV? is the Lapacian, d; and the following dj, are constants. Suppose we
already have |[V/Rm| < ¢; for j < k — 1, [3; [V*Rm[* < d. Then by (5),(6)and(7), we
have 1

§A|V’°Rm|2 < —|V*'Rm|? + a|V*Rm|? 4 b|V*Rm|, (9)

a, b are positive constants depend on ¢;, j < k—1. Now recall Kato’s inequality |d|V*Rm]||? <
|V¥+1Rm|%, we have

|V*Rm|A|V*Rm| < |d|V*Rm|? — |V**'Rm|? 4+ a|V*Rm|? + 5| V*Rm|
< a|V*Rm|? 4 5| V*Rm)|.
We can rewrite this inequality as
A(IV*Rm| + b/a) < a(|VRm| + b/a). (10)

Put f = |[V*Rm| + b/a, by Kato’s inequality, (9)and [y, |V*Rm|? < di, we know that
Jag IV¥HIRm|? < diyy, f € WHE(M). With (10)and the Sobolev inequality (8), one can
deduce the bound |[V*Rm| 4+ b/a = f < ¢j by standard Moser’s iteration(cf.[9]).

So inductively we get the bounds |[V/Rm| < ¢; for all j. Thus the c* version of Cheeger-
Gromov compactness theorem yields that I'(n, A, 40, V) is ¢* compact.

Remark 1 If we consider locally symmetric manifolds, namely, condition(1) is replaced
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by “VRm = 0”,then condi'tion(2) can be replaced by “scalar curvature of M > A\”.This is
because the method of lemma 1 now gives the bound k(M) < #%/i2. So actully k(M) is
bounded. In particular, for n = 3, VRic = 0 implies VRm = 0 since three dimensional
manifolds have vanishing Weyl conformal curvature tensor. Thus the condition may be
weakened.

Remark 2 For n = 4, condition can replaced as above. This is because VRic = 0 implies
VRm = 0 or M is an Einstein manifold for n = 4 (cf.[L1]). While for four dimensional
Einstein manifolds, there is already a ¢® compactness theorem in[12].

Now we go to prove Theorem 2, which gives an application of Theorem 1.

Proof of Theorem 2 Suppose on the contrary that there is a sequence of n— dimensional
non-flat manifolds {M;} satisfying Ric = 0,|VRm| < 1/5,k(M) > A, d(M) = 1,i(M;) >
i9. The Bishop-Gromov volume comparision theorem yields that V(M) < w,, where w,
is the volume of the unit ball of R with standard metric. By Theorem 1, there are a
n—dimensional manifold M and a subsequence of {M;} ¢® converging to M. Without
loss of generality,we can assume that {M;} itself ¢® converges to M. Namely,there is a
sequence of diffeomorphism f; : M — M; such that {f*g;}c* converges to g. Where g¢; is
the Riemannian metric on M;, g is a Riemannian metric on M. Now M is Ricci flat and
locally symmetric, so M is flat(cf.[13]). By passing to finite covering we can assume that
M is the n—dimensional torus T". Now the Riemannian manifold (T™, f*¢;) is Ricci flat,
so it is actually flat(cf[14],(15]). This yields that (M;,g;) is flat, which contradicts to our
assumption.

Remark 3 We feel that the condition “k(M) > A” in Theorem 2 may be removed. At
least for n = 4 this is true by remark 2.
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Ricci I F{TH—I Riemann FEFH C~ B

#" KA B mBE
(FEMEKEIER S8 230026)

1% B: AICGER, 7£ Gromov-Hausdorff #$}MF, Ricci HZEYAT, B EMBEME—LEH
TR, &BH LAH Riemann FIEHEEGE < BH. FHEH, RAINEH—4 pinching
R, MERBEHT, Ricd FHERELETH. '
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