On Non-Decomposable Hermitian Forms over $Z[\sqrt{-5}]$ *

HAN Shi-an

(Dept. of Math., East China Normal University, Shanghai 200062, China)

Abstract: In this paper, we discuss the non-decomposability of lattices over $Z[\sqrt{-5}]$. All lattices of rank 2 with discriminant 2 are found and the lattices of rank $n \geq 3$ with discriminant 2 are constructed.

Key words: non-decomposable form; lattice; class.

Classification: AMS(1991) 11E39/CLC O156.5

Document code: A Article ID: 1000-341X(2001)02-0191-06

1. Introduction

Let $F = Q(\sqrt{-m})$ (m > 0 and square-free) be an imaginary quadratic field, o the ring of integers of F, (V, H) a Hermitian space of dimension n with a postive definite Hermitian form H. A lattice L in V is called integral if $H(x,y) \in \mathbf{o}$ for all $x,y \in L$. In this respect, H is also called the Hermitian form on L. In this paper, all lattices (if not specified) will be integral with respect to H.

Let L be a lattice in a Hermitian space (V, H). It is well-known that there exists a base $\{x_1, x_2, \ldots, x_n\}$ and ideals $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n$ in F, such that $L = \mathbf{a}_1 x_1 + \mathbf{a}_2 x_2 + \ldots + \mathbf{a}_n x_n$, and $\{x_i\}$ and $\{\mathbf{a}_i\}$ can be chosen in a way such that $\mathbf{a}_1 = \mathbf{a}_2 = \cdots = \mathbf{a}_{n-1} = \mathbf{o}$ ([1, 81:3] and [1,81:5]).

Definition 1.1 Let $L = \mathbf{a}_1 x_1 + \mathbf{a}_2 x_2 + \cdots + \mathbf{a}_n x_n$ be a lattice in (V, H). The ideal $\mathbf{d}(L) = \det H(x_i, x_j) \prod_{i=1}^{n} \mathbf{a}_i \bar{\mathbf{a}}_j$ is called the discriminant of L. If $\mathbf{d}(L) = d\mathbf{o}$ $(d \in N)$, we simply write d(L) = d.

It is clear that if L is integral, then $d(L) \subseteq o$. It can be shown that d(L) is independent of the choice of $\{x_i\}$ and $\{a_i\}$ ([2]).

Definition 1.2 Let H be a positive definite Hermitian form on L. Then H, or alternatively L, is called decomposable if there exist two non-trivial positive semi-definite Hermitian forms H_1 and H_2 on L such that

Biography: HAN Shi-an (1948-), male, M.Sc., associate professor.

E-mail: sahan@math.ecnu.edu.cn

^{*}Received date: 1998-02-11

- (1) $H(x,y) = H_1(x,y) + H_2(x,y);$
- (2) $H_i(x,y) \in \mathbf{o}, i = 1,2,$

for all $x, y \in L$. Otherwise H, also L, is called non-decomposable.

It is easy to prove

Proposition 1.1 Let $L = \mathbf{a}_1 x_1 + \mathbf{a}_2 x_2 + \ldots + \mathbf{a}_n x_n$ be an integral lattice in (V, H), $A = (H(x_i, x_j))$ the matrix of L. Then H is decomposable on L if and only if there exist two non-trivial positive semi-definite Hermitian matrices $B = (b_{ij})$ and $C = (c_{ij})$ such that (1) A = B + C; $(2) b_{ij} \mathbf{a}_i \bar{\mathbf{a}}_j \subseteq \mathbf{o}$, $c_{ij} \mathbf{a}_i \bar{\mathbf{a}}_j \subseteq \mathbf{o}$, $i, j = 1, 2, \ldots, n$.

For non-decomposability concerning unimodular lattices Zhu gave a complete resolution ([3]). He also discussed the decomposability of positive definite Hermitian forms over Gaussian domain ([4]). The main purpose of this paper is to discuss the decomposability of positive definite Hermitian forms over $Z[\sqrt{-5}]$ with discriminant d=2. We shall prove the following theorems:

Theorem 1 There are exactly nine classes of positive definite Hermitian forms of rank 2 with discriminant 2 over $Z[\sqrt{-5}]$, and the representatives are: $[1, 0, 1]^p$, $[2, 1, 1]^p$, $[2, \omega, 3]^p$, $[3, \omega, 2]^p$, $[5, 3+\omega, 3]^p$, $[5, 2(1+\omega), 5]^p$, [1, 0, 2], $[2, 1+\omega, 4]$, $[7, 3(1+\omega), 8]$. All are decompasable except two non-free lattices $[3, \omega, 2]^p$ and $[5, 3+\omega, 3]^p$. Where $\omega = \sqrt{-5}$, $\mathbf{p} = (2, 1+\sqrt{-5})$, and $[a, b, c]^p$ denotes the lattice $L = \mathbf{ox}_1 + \mathbf{px}_2$ with the matrix $\begin{pmatrix} a & b \\ b & c \end{pmatrix}$.

Theorem 2 For every n > 3 there exist n-ary non-decomposable positive definite Hermitian free-lattices over $Z[\sqrt{-5}]$ with discriminant d = 2. There are no such forms with the desired properties for n = 1 or 2.

2. The lattices of rank 2 with discriminant 2

Definition 2.1 Let L, K be two lattices in a Hermitian space (V, H), \mathbf{p} be a prime ideal such that $\bar{\mathbf{p}} = \mathbf{p}$. L is said to be \mathbf{p} -close to K if the invariant factors of L in K are $\mathbf{p}, \mathbf{o}, \mathbf{o}, \cdots, \mathbf{o}$ or $\mathbf{o}, \mathbf{o}, \cdots, \mathbf{o}$ or $\mathbf{o}, \mathbf{o}, \cdots, \mathbf{o}$.

It is clear that L is p-close to K if and only if K is p-close to L.

Proposition 2.1 Let L be a lattice in (V, H), $y \in L \setminus pL$ such that $p^r \parallel H(y, L)$. Then we have that $K = L(y) = \{ x \in L \mid H(x, y) \equiv 0 \pmod{p^{r+1}} \}$ is p-close to L.

Proof Let $L = \mathbf{a}_1 x_1 + \mathbf{a}_2 x_2 + \ldots + \mathbf{a}_n x_n$. Without loss of generality, we can assume that \mathbf{a}_i are integral and $(\mathbf{a}_i, \mathbf{p}) = 1$ $(i = 1, 2, \ldots, n)$, $\mathbf{p}^{r_i} \parallel H(x, y)$ $(r = r_1 \le r_i \le r_{i+1}, i = 1, 2, \ldots, n-1)$. Take an element $\alpha \in \mathbf{a}_1 \setminus \mathbf{p}$, then $\alpha \mathbf{a}_i \subseteq \mathbf{a}_1$ and $\mathbf{p}^{r_i} \parallel H(\alpha^{-1} x_i, y)$. Therefore we can assume that $\mathbf{a}_i \subseteq \mathbf{a}_1 \subseteq \mathbf{o}$ $(i = 2, 3, \ldots, n)$.

By the strong Approximation Theorem ([1,21:8]), there exist $\alpha_i \in F$ $(i = 1, 2, \dots, n)$, such that

$$\left\{ egin{aligned} \left| H(x_i,y) + ar{lpha}_i H(x_1,y)
ight|_p & \leq arepsilon, \qquad i=2, \ 3, \ \ldots, \ n. \ \\ \left| lpha_i
ight|_q & \leq 1, \qquad orall q
eq p. \end{aligned}
ight.$$

For every positive real number ε . And for sufficiently small positive number ε , $\alpha_i \in \mathbf{o}$.

We have

$$L = \mathbf{a}_1 x_1 + \mathbf{a}_2 (x_2 + \alpha_2 x_1) + \ldots + \mathbf{a}_n (x_n + \alpha_n x_1).$$

Hence $L' = \mathbf{a}_1 \mathbf{p} x_1 + \mathbf{a}_2 (x_2 + \alpha_2 x_1) + \ldots + \mathbf{a}_n (x_n + \alpha_n x_1)$ is p-close to L. We have $L' \subseteq L(y)$ and $L(y) \neq L$ since $\mathbf{a}_1 x_1 \not\subseteq L(y)$. This implies L' = L. Therefore L(y) is p-close to L.

Proposition 2.2 Let L be a unimodular lattice, K a sublattice of L. If K is p-close to L, then there exists an element $y \in L \setminus pL$ such that

$$K = L(y) = \{ x \in L \mid H(x,y) \equiv 0 \pmod{\mathbf{p}} \}.$$

And y is independ of the choice in $[y] \mod pL$.

Proof There exists a base $\{x_i\}$ of V and ideals $\{a_i\}$ such that

$$L = \mathbf{a}_1 x_1 + \mathbf{a}_2 x_2 + \ldots + \mathbf{a}_n x_n; \quad k = \mathbf{a}_1 \mathbf{p} x_1 + \mathbf{a}_2 x_2 + \ldots + \mathbf{a}_n x_n, \quad (\mathbf{a}_1, \mathbf{p}) = 1.$$

Then $L^{\#} = \mathbf{a}_1^{-1} x_1^{\#} + \mathbf{a}_2^{-1} x_2^{\#} + \ldots + \mathbf{a}_n^{-1} x_n^{\#}$. Since L is a unimodular lattice, $L = L^{\#}$. Choose an element $\beta \in \mathbf{a}_1^{-1} \setminus \mathbf{p}$, then $\beta x_1^\# \in L$ and $\mathbf{p} \mid H(\beta x_1^\#, L)$.

Therefore $K = L(\beta x_1^\#) = \{ x \in L \mid H(x, \beta x_1^\#) \equiv 0 \pmod{\mathbf{p}} \}$.

Next, if $y \equiv \beta x_1^\# \pmod{pL}$, then

$$H(x,y) \equiv 0 \pmod{\mathbf{p}}$$
 if and only if $H(x,\beta x_1^\#) \equiv 0 \pmod{\mathbf{p}}$.

This implies the result. \Box

Let
$$F = Q(\sqrt{-5})$$
, $o = Z[\sqrt{-5}]$, $\omega = \sqrt{-5}$, $p = (2, 1 + \omega)$.

Proposition 2.3 Let (V, H) be a Hermitian space of dimension 2, K a lattice in V with discriminant d(K) = 2. Then there exists a unimodular lattice L in V such that $K \subseteq L$ and K is p-close to L.

Proof Let $K = \mathbf{o}x_1 + \mathbf{a}x_2$. Since the class number of F is 2, a can be chosen such that either $\mathbf{a} = \mathbf{o}$ or $\mathbf{a} = \mathbf{p}^{-1}$.

Suppose $K = \mathbf{o}x_1 + \mathbf{p}^{-1}x_2$, then $2 \mid H(x_2, x_2)$ and $\det(H(x_i, x_i)) = 4$.

- (a). If $2 \mid H(x_1, x_1)$, then $\mathbf{p}^2 \mid H(x_1, x_2)$. Then $L = \mathbf{p}^{-1}x_1 + \mathbf{p}^{-1}x_2$
- (b). If $4 \mid H(x_2, x_2)$, then $\mathbf{p}^2 \mid H(x_1, x_2)$. Then $L = \mathbf{o}x_1 + \mathbf{o}(2^{-1}x_2)$
- (c). If $2 |H(x_1, x_1)$, and $2 |H(x_2, x_2)$, Let $y_1 = \frac{1+\omega}{2} x_2$, $y_2 = x_2$. Then $K = \mathbf{o} y_1 + \mathbf{p}^{-1} y_2$, with $2 \mid H(y_1, y_1)$. Therefore $L = \mathbf{p}^{-1}y_1 + \mathbf{p}^{-1}y_2$ a desired in(a). \square

Proposition 2.4^[2] There are exactly six classes of positive definite Hermitian unimodular lattice of rank 2. The representative forms are

$$[1, 0, 1], [2, \omega, 3], [5, 2(1+\omega), 3], [1, 0, 2]^{p^{-1}}, [2, 1+\omega, 4]^{p^{-1}}, [2, 1+\bar{\omega}, 4]^{p^{-1}}.$$

Proof of Theorem 1 Let K be a lattice of rank 2 with discriminant 2. There is a unimodular lattice L of rank 2 and an element $y \in L$ such that K = L(y) and K is p-close to L. And such y is independent of the choice in [y] mod pL by Proposition 2.1 and 2.2. Hence all classes of rank 2 with discriminant 2 can be found from the unimodular lattices in Proposition 2.3.

Let L be a unimodular lattice of rank 2. Then there is a base x_1, x_2 of V such that either $L = \mathbf{o}x_1 + \mathbf{o}x_2$ with det A = 1 or $L = \mathbf{o}x_1 + \mathbf{p}^{-1}x_2$ with det A = 2. For any $y \in L \subseteq \mathbf{p}L$, we have

$$y \equiv egin{cases} x_1, \ x_2, \ x_1 + x_2, \end{cases} \pmod{\mathbf{p}L}$$

while $L = \mathbf{o}x_1 + \mathbf{o}x_2$, or

$$y \equiv \left\{egin{array}{l} x_1, \ rac{1+\omega}{2}x_2, \ x_1 + rac{1+\omega}{2}x_2, \end{array}
ight. \pmod{\mathbf{p}L}
ight.$$

where $L = \mathbf{o}x_1 + \mathbf{p}^{-1}x_2$.

By constructing p-close lattices for all lattices in Proposition 2.3 and for all y listed above, we get the following nine classes:

[1, 0, 1]^P, [2, 1, 1]^P, [2, ω , 3]^P, [3, ω , 2]^P, [5, 3 + ω , 3]^P, [5, 2(1 + ω), 5]^P, [1, 0, 2], [2, 1 + ω , 4], [7, 3(1 + ω), 8].

It can be shown that they are not pair-wisely equivalent from by counting the elements representing 1, 2, 3 and their coefficients.

Now we show that $[3, \omega, 2]^p$ is non-decomposable.

Suppose that there exist two non-trivial positive semi-definite Hermitian matrices $A = (a_{ij})_2$ and $B = (b_{ij})_2$ such that

 $(1). \quad \binom{3}{\bar{\omega}} \stackrel{\omega}{2} = A + B;$

(1). $(\bar{a}_{2}) - A + B$, (2). $a_{11}, b_{11} \in \mathbb{Z}$, $a_{22}, b_{22} \in \frac{1}{2}\mathbb{Z}$, $a_{12}, b_{12} \in \mathbf{p}^{-1}$. We have $a_{22} = 0, 1, \frac{1}{2}, \frac{3}{2}$ or 2 since $a_{22} \in \frac{1}{2}\mathbb{Z}$ and $0 \le a_{22} \le 2$.

(a). If $a_{22}=0$, then $a_{12}=a_{21}=0$. Hence $B=\begin{pmatrix} 3 & \omega \\ \bar{\omega} & 2 \end{pmatrix}$ since det B>0. This implies A=0, a contradiction.

(b). If $a_{22} \geq 1$, then $b_{22} \leq 1$. Hence $N(b_{12}) \leq 3$ since det $B \geq 0$. But $b_{12} \in \mathbf{p}^{-1}$, $2N(b_{12}) \in Z$ and $2N(b_{12} \leq 6$. Therefore $b_{12} = 0$, ± 1 , $\pm \frac{1 \pm \omega}{2}$, which is impossible since each case implies a contradiction.

Therefore we have only trivial decomposition. this proves the non-decomposability for $[3, \omega, 2]^p$.

By the same method we can show that $[5, 3 + \omega, 3]^p$ is also non-decomposable.

For the other lattices, it is easy to verify that they are all decomposable by exhibiting the decomposition for each one. For example, we have $[2, \omega, 3]^{\mathbf{p}} = [2, 2\omega, 12]^{\mathbf{p}^{-1}} = [1, 1+\omega, 6]^{\mathbf{p}^{-1}} + [1, -1+\omega, 6]^{\mathbf{p}^{-1}}$ and $[7, 3(1+\omega), 8] = [2, 1+\omega, 3] + [5, 2(1+\omega), 5]$.

The same method applies for the other lattices.

Since the only two non-decomposable lattices are not free, all free lattices listed in Theorem 1 are decomposable. This complete the proof.

3. Non-decomposable lattices of rank $n \geq 3$ with discriminant 2

Proposition 3.1 The free-lattices represented by

$$H_1=egin{pmatrix} 2 & 1 & 0 \ 1 & 2 & \omega \ 0 & ar{\omega} & 4 \end{pmatrix}, \qquad \det H_1=2, \ H_2=egin{pmatrix} 2 & 1 & 0 & 0 \ 1 & 2 & 1 & 0 \ 0 & 1 & 2 & 1+\omega \ 0 & 0 & 1+ar{\omega} & 5 \end{pmatrix}, \qquad \det H_2=2$$

are non-decomposable.

The proof follows directly from [4, Lemma 4]. Now

$$\Lambda = \begin{pmatrix} 3 & \omega \\ \bar{\omega} & 4 \end{pmatrix}; \qquad \qquad \widetilde{\Lambda} = \begin{pmatrix} 4 & \omega \\ \bar{\omega} & 3 \end{pmatrix}; \ H_0 = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & \omega \\ 0 & \bar{\omega} & 4 \end{pmatrix}; \qquad \qquad \widetilde{H}_0 = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 0 & 1 & 2 & 1 + \omega \\ 0 & 0 & 1 + \bar{\omega} & 5 \end{pmatrix}; \ H_g = \begin{pmatrix} \widetilde{\Lambda} & 0 & 0 & \cdots & 0 \\ 1 & 0 & \cdots & 0 & 1 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

We have

Proposition 3.2 The free-lattices represented by H_g and \widetilde{H}_g are non-decomposable of ranks n = 2g + 3 and n = 2g + 4 respectively with discriminant d = 2 for $g = 0, 1, 2, \ldots$

Proof We give the proof for H_g only, since it also applies to \widetilde{H}_g . Let $A_0 = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$, $A_g = \begin{pmatrix} H_{g-1} & 1 \\ 1 & 3 \end{pmatrix}$ $(g \ge 1)$. We have det $A_i = 3$ and det $H_i = 2$ $(i \ge 0)$. It follows that H_q are positive definite Hermititian matrices for all non-negative integars g.

Now, we prove the non-decomposability of H_a by induction.

First of all, H_0 is non-decomposable by proposition 3.1. Assume H_g is non-decomposable for $g \geq 0$, and consider H_{g+1} .

Suppose we have a decomposition as $H_{g+1} = D_1 + D_2$, where D_1 and D_2 are positive semi-definite Hermitian matrices. Write

$$H_{g+1} = \begin{pmatrix} L_1 & * \\ * & \Lambda_1 \end{pmatrix} + \begin{pmatrix} L_2 & * \\ * & \Lambda_2 \end{pmatrix},$$

where L_i are (2g+3)-th matrices and Λ_i are 2×2 matrices (i=1,2). This gives a decomposition of H_g : $H_g = L_1 + L_2$. Since H_g is non-decomposable by assumption,

 $L_1 = 0$ or $L_2 = 0$. Suppose $L_1 = 0$, then $D_1 = \begin{pmatrix} 0 & 0 \\ 0 & \Lambda_1 \end{pmatrix}$ since D_1 is a positive semi-definite Hermitian matrix. Therefore

$$H_{g+1} = \begin{pmatrix} 0 & 0 \\ 0 & \Lambda_1 \end{pmatrix} + \begin{pmatrix} H_g & 1 \\ 1 & \Lambda_2 \end{pmatrix}.$$

Let $\Lambda_2=\left(egin{array}{cc} a & eta \ ar{eta} & b \end{array}
ight)$. By computing the cofactors we have $ab-etaar{eta}\geq 0, 2(ab-etaar{eta})-3b\geq 0$ $0, 2a - 3 \ge 0$. Hence $a \ge 2$ and $b(2a - 3) - 2\beta \overline{\beta} \ge 0$.

- (1). If a = 2, then $N(\beta) = 0$ or 1.
- (a). If $N(\beta) = 0$, then $\Lambda_1 = \begin{pmatrix} 1 & \omega \\ \bar{\omega} & * \end{pmatrix}$ is not positive semi-definite since $b \leq 4$. (b). If $N(\beta) = 1$, then $\Lambda_1 = \begin{pmatrix} 1 & \pm 1 + \omega \\ \pm 1 + \bar{\omega} & * \end{pmatrix}$ is also not positive semi-definite. (2). If a = 3, then $\Lambda_1 = \begin{pmatrix} 0 & 0 \\ 0 & * \end{pmatrix}$ and $\Lambda_2 = \begin{pmatrix} 3 & \omega \\ \bar{\omega} & b \end{pmatrix}$. Since $b \leq 4$, and $\det \Lambda_2 \geq 0$, we have b=4. Hance $\Lambda_1=0$ which means that we have only trivial decomposition. This proves the non-decomposability of H_q . \square

Proof of theorem 2 Proposition 3.1 and 3.2 gives the non-decomposable free-lattices with discriminant 2 for $n \geq 3$. Theorem 1 shows there are only two non-decomposable lattices (both not free) of rank 2 with discriminant 2, and the proof for dcomposability of lattices of rank 1 with discriminant 2 is trivial. This completes the proof.

References:

- O'MEARA O T. Introduction to Quadratic Forms [M]. Springer-Verlag, Berlin, Gottingen, Heiderberg, 1963.
- [2] HOFFMANN D W. On positive definite Hermitian forms [J]. Manuscript Math., 1991, 71: 399-429.
- [3] ZHU Fu-zu. on non-decomposability and indecomposability of quadratic forms [J]. Sci. Sinica, Ser.A, 1988, 31: 265-273.
- [4] ZHU Fu-zu. On non-decomposable Hermitian forms over Gaussian Domain [J]. Acta. Math. Sinica, to appear.
- [5] ZHU Fu-zu. Construction of indecomposable definite Hermitian forms [J]. Chinece Ann. of Math. Ser.A, 1994, 12: 349-360.

$Z[\sqrt{-5}]$ 上不可分的 Hermite 型

韩士安

(华东师范大学数学系, 上海 200062)

摘 要:本文讨论了 $Z[\sqrt{-5}]$ 上不可分的正定 Hermite 型的构作. 给出了所有秩为 2 判别 式等于 2 的不可分的正定 Hermite 型. 当秩 $n \ge 3$ 时,证明了存在 $Z[\sqrt{-5}]$ 上判别式等 于2的不可分的正定 Hermite 型,并给出了它们的明显结构。