Journal of Mathematical Research & Exposition
Vol.21, No.2, 191-196, May, 2001

On Non-Decomposable Hermitian Forms over Z [V-5] *
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Abstract: In this paper, we discuss the non-decomposability of lattices over Z [v-5].
All lattices of rank 2 with discriminant 2 are found and the lattices of rank n > 3 with
discriminant 2 are constructed.
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1. Introduction

Let F = Q(v/-m) (m > 0 and square-free) be an imaginary quadratic field, o the
ring of integers of F, (V, H) a Hermitian space of dimension n with a postive definite
Hermitian form H. A lattice L in V is called integral if H(z,y) € o for all z,y € L. In
this respect, H is also called the Hermitian form on L. In this paper, all lattices (if not
specified) will be integral with respect to H.

Let L be a lattice in a Hermitian space (V, H). It is well-known that there exists a base
{z1,23,...,2, } and ideals a;,a,,...,8, in F, suth that L = a;z; + azs + ... + a,Zy,,
and {z;} and {a;} can be chosen in a way suth that a; = az = --- = a,_; = o ([1, 81:3]
and [1,81:5]).

Definition 1.1 Let L = ajz; + a;23 + -+ + a4z, be a lattice in (V, H). The ideal
d(L) = det H(z;,z;) [} a;d; is called the discriminant of L. If d(L) = do (d € N), we
simply write d(L) =d.

It is clear that if L is integral, then d(L) C o. It can be shown that d(L) is indepen-
dent of the choice of {z;} and {a;} ([2]).

Definition 1.2 Let H be a positive definite Hermitian form on L. Then H, or al-
ternatively L, is called decomposable if there exist two non-trivial positive semi-definite
Hermitian forms Hy and H, on L such that
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(1) H(z,y) = Hi(z,y) + Ha(2,y);
(2) Hi(z,y) €o0,i=1,2,

for all z,y € L. Otherwise H, also L, is called non-decomposable.
It is easy to prove

Proposition 1.1 Let L = ajz; + a22 + ... + 8n2n be an integral lattice in (V, H),
A = (H(z;,z;)) the matrix of L. Then H is decomposable on L if and only if there exist
two non-trivial positive semi-definite Hermitian matrices B = (b;;) and C = (ci;) such
that (1) A= B + C; (2) b;;a;a; C o, ¢;a;a; Co, i,7=1,2,...,n.

For non-decomposability concerning unimodular lattices Zhu gave a complete resolu-
tion ([3]). He also discussed the decomposability of positive definite Hermitian forms over
Gaussian domain ([4] ). The main purpose of this paper is to discuss the decomposability
of positive definite Hermitian forms over Z [v/=5] with discriminant d = 2. We shall prove
the following theorems:

Theorem 1 There are exactly nine classes of positive definite Hermitian forms of rank
2 with discriminant 2 over Z[/=5], and the representatives are: [1, 0, 1]P, (2, 1, 1]P,
[2, w, 3P, [3, w, 2JP, [5, 3+w, 3P, [5, 2(1 +w), 5P, [1, 0, 2], [2, 1 +w, 4], [7, 3(1 +w), 8].
All are decompasable except two non-free lattices [3, w, 2]P and [5, 3 + w, 3]P. Where
w=1=5,p =(2,14+/-5), and [a, b, c|P denotes the lattice L = oz1 + pZ2 with the
matrix (2 b).

Theorem 2 For every n > 3 there exist n-ary non-decomposable positive definite Her-
mitian free-lattices over Z[\/—5] with discriminant d = 2. There are no such forms with
the desired properties for n = 1 or 2.

2. The lattices of rank 2 with discriminant 2

Definition 2.1 Let L, K be two lattices in a Hermitian space (V, H), p be a prime
ideal such that p = p. L is said to be p-close to K if the invariant factors of L in K are
p,0,0,:++,00r0,0 -+ 0, p_ L.

It is clear that L is p-close to K if and only if K is p-close to L.

Proposition 2.1 Let L be a lattice in (V, H), y € L\pL such that p" | H(y,L). Then
we have that K = L(y) = {z € L | H(2,y) =0 (mod p t1)} is p-close to L.

Proof Let L = a;z; + a222 + ...+ a,z,. Without loss of generality, we can assume that

a; are integral and (a;, p) =1 (i = 1,2,..., n), p" || H(z,¥y) (r =71 <7 < rigay i=
1, 2, ..., n—1). Take an element a € a; \ p, then aa; C ay and p” || H(a =i, ¥).
Therefore we can assume that a; Ca; Co (¢ =2, 3, ..., n).

By the strong Approximation Theorem ([1,21:8]), there exist a; € F (i =1,2,-- 1),
such that
{|H(zi,y)+&;H(zl,y)lp§e, 1=2,3, ..., n

Iailq < 1: Vq # b.

For every positive real number £. And for sufficiently small positive number ¢, a; € o.
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We have
L =ajz; +az(z2 + az21) + ... + an(zn + anzy).

Hence LI’ = a;pz; +as(22+azz1)+.. .+ an(2n+ a,21) is p-close to L. We have L' C L(y)
and L(y) # L since ayz; € L(y). This implies L' = L. Therefore L(y) is p-close to L.

Proposition 2.2 Let L be a unimodular lattice, K a sublattice of L. If K is p-close to
L, then there exists an element y € L \ pL such that

K=Ly)={z«cL|H(z,y)=0 (modp)}.

And y is independ of the choice in [y ]| modpL.
Proof There exists a base {z;} of V and ideals {a;} such that

L=ajzy+azzz+...+anzy; k=aipz1+azz+...+anz,, (a1,p)=1.

Then L¥# = al'l:ei§e + az_l:c}‘,‘66 + .. 4 a;lzf. Since L is a unimodular lattice, I = L#*.
Choose an element 8 € a7 '\p, then ﬂ:c'f € L and p | H(ﬂzf,L).

Therefore K = L(,B:c'f) ={zel| H(:c,ﬂ:cf) =0 (modp)}.

Next, if y = ,B:cf (mod pL), then

H(z,y) =0 (mod p) if and only if H(z,ﬂmf) =0 (mod p).

This implies the result. O

Let F=Q(\/__5)’0=Z[\/__5]7w:\/—‘_5ap:(2) 1+w)‘

Proposition 2.3 Let (V, H) be a Hermitian space of dimension 2, K a lattice in V with
discriminant d(K) = 2. Then there exists a unimodular lattice L in V such that K C L
and K is p-close to L.

Proof Let K = oz; + az,. Since the class number of F is 2, a can be chosen such that
eithera=o ora=p™!.

Suppose K = oz; + p~'z,, then 2 | H(z,2,) and det(H(z;,2;)) = 4.

(a). If 2 | H(z1,21), then p? | H(z1,23). Then L = p~lz; + p~lz, a desired.

(b). If 4 | H(z2,2;), then p?||H(z1,2;). Then L = oz; + o(27'z;) a desired.

(c).If2 /H(z1,21), and 2||H (22, 22), Let y3 = 4%25,y, = 2,. Then K = oy1 +p~ v,
with 2 | H(y1,y1). Therefore L = p~ly; + p~ly, a desired in(a). O

Proposition 2.4121 There are exactly six classes of positive definite Hermitian unimodular
lattice of rank 2. The representative forms are
(1,0,1], (2, w, 3], [6, 2(1 + w), 3], (1,0, 2]P7", [2, 1 + w, 4P, [2, 1 + @, 4]P™".

Proof of Theorem 1 Let K be a lattice of rank 2 with discriminant 2. There is a
unimodular lattice L of rank 2 and an element y € L such that K = L(y) and K is p-close
to L. And such y is independent of the choice in [y ] mod pL by Proposition 2.1 and 2.2.
Hence all classes of rank 2 with discriminant 2 can be found from the unimodular lattices
in Proposition 2.3.

— 193 —



Let L be a unimodular lattice of rank 2. Then there is a base z1,z2 of V such that
either L = oz, + oz; with det A = 1 or L = oz; + p 1z, with det A = 2. For any
y€ L C pL, we have

21,
Y=< za, (mod pL)
z1 + =2,
while L = oz; + oz,, or
Z1,
y =] H¥a,, (mod pL)
z1 + ljz;ﬁzz,

where L = ozy + p~lz,.

By constructing p-close lattices for all lattices in Proposition 2.3 and for all y listed
above, we get the following nine classes:

[1,0,1]P, [2,1,1]P, (2, w, 3]P, [3, w, 2], [5,3 + w, 3JP, [5, 2(1 + w), 5]P, (1,0, 2],
2,14 w, 4], [7, 3(1 +w), 8].

It can be shown that they are not pair-wisely equivalent from by counting the elements
representing 1, 2, 3 and their coefficients.

Now we show that [3, w, 2]P is non-decomposable.

Suppose that there exist two non-trivial positive semi-definite Hermitian matrices
A= (a,'j)2 and B = (b,‘j)2 such that

1. 9 =4+5B;

(2) ai1,b11 € Z, azz, byg € %Z, ayz, b1 € p—l. We have ay; =0, 1, %, % or 2 since
azzG%Za.ndOSanSZ.

(a). If azz = 0, then a3 = a3 = 0. Hence B = () since det B > 0. This implies
A = 0, a contradiction. ,

(b). If az2 > 1, then bz < 1. Hence N(b12) < 3 since det B > 0. But b1 € p L,
2N(b12) € Z and 2N(b;2 < 6. Threrfore b1 = 0, %1, :tl—:gﬂ, which is impossible since each
case implies a contradiction.

Therefore we have only trivial decomposition. this proves the non-decomposability for
(3, w, 2)P.

By the same method we can show that [5, 3 + w, 3]P is also non-decomposable.

For the other lattices, it is easy to verify that they are all decomposable by exhibiting
the decomposition for each one. For example, we have (2, w, 3P = [2, 2w, 12]"-l =
1, 1+w, 6P +[1, -1 4w, 6]P”" and [7, 3(1 + w), 8] = [2, 1 +w, 3] + [5, 2(1 + w), 5].

The same method applies for the other lattices.

Since the only two non-decomposable lattices are not free, all free lattices listed in
Theorem 1 are decomposable. This complete the proof. O

3. Non-decomposable lattices of rank n > 3 with discriminant 2
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Proposition 3.1 The free-lattices represented by

210
H=11 2 w], det H; = 2,
0 v 4
/21 0 0
1 2 1 0
Hz— 01 9 1+w , detH2—2
0 0 14+@ 5
are non-decomposable.
The proof follows directly from [4, Lemma 4].
Now
3 w ~ 4 w
A‘(a 4)’ A“(a 3)’
21 0 /2 1 0 0
H0= 1 2 w), ﬁ. _ 1 2 1 0
0 @ 4 ° 1o 1 2 14w]’
00 \0 0 14+& 5
: ~ 0 0---0
H = Bt g _ (&1 0o
9 1 0’ H, = 01 5
0---0 1 : Hy
0---0 O A \0 0
We have

Proposition 3.2 The free-lattices represented by H, and I?g are non-decomposable of
ranks n = 2g + 3 and n = 2g + 4 respectively with discriminant d = 2 for g = 0,1,2,....

Proof We give the proof for H, only, since it also applies to H g-

Let Ap = (i ;),Ag = (Hg_i ;) (g > 1). We have det A; = 3 and det H; = 2

(¢ > 0). It follows that H, are positive definite Hermititian matrices for all non-negative
integars g.

Now, we prove the non-decomposability of H, by induction.

First of all, Hy is non-decomposable by proposition 3.1. Assume H, is non-decomposable
for g > 0, and consider Hy,;.

Suppose we have a decomposition as H,.1 = D; + D2, where D; and D, are positive
semi-definite Hermitian matrices. Write

_ L1 * Lz *
mn= (2 0)+ (0 5)
where L; are (2g + 3)-th matrices and A; are 2 X 2 matrices (¢ = 1,2). This gives a

decomposition of Hy;: Hy = Ly + Ly. Since Hy is non-decomposable by assumption,
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0 0

Ly = 0or Ly = 0. Suppose L; = 0, then Dy = (0 A
1

) since D; is a positive

semi-definite Hermitian matrix. Therefore
{0 0 Hy, 1
Hn= (o ) +("h,)

Let Ay = ( % ﬁb’ ) By computing the cofactors we have ab—38 > 0,2(ab—33)—3b >

0,2a — 3 > 0. Hence a > 2 and b(2a — 3) — 288 > 0.
(1).fa=2,then N(f)=0or 1.
(a). If N(B) = 0, then A, = (}“) is not positive semi-definite since b < 4.
(b). EN(B) =1, then Ay = ( _} +§1;"“’) is also not positive semi-definite.
(2). fa = 3, then Ay = (§2) and A, = (%). Since b < 4, and det A, > 0, we have
b = 4. Hance A; = 0 which means that we have only trivial decomposition. This proves
the non-decomposability of H;. O

Proof of theorem 2 Proposition 3.1 and 3.2 gives the non-decomposable free-lattices
with discriminant 2 for n > 3. Theorem 1 shows there are only two non-decomposable
lattices (both not free) of rank 2 with discriminant 2, and the proof for dcomposability of
lattices of rank 1 with discriminant 2 is trivial. This completes the proof. O
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Z[v=5] EANT[45HY) Hermite £l

H + %
(BERMERERFER, L8 200062)

B E: AT Zv-5] EARRAHIEE Hermite BIMATE. S TEHTABY 2 U5

RETF 2 HATHMYIER Hermite B. L%k n > 3 B, EWTHFE 2[V-5] LAFRAE
F 2 ARVSHHIIEE Hermite B, FFEHT EMNHBER.

-— 196 —



