Bilocal Derivations of Reflexive Algebras *

JING Wu¹, WANG Xiao-jing²

(1. Dept. of Math., Zhejiang University, Hangzhou 310027, China;

2. Dept. of Math., Yantai Teachers' College, Yantai 264025, China)

Abstract: Let \mathcal{A} be a reflexive algebra in reflexive Banach space X such that both $O_+ \neq O$ and $X_- \neq X$ in Lat \mathcal{A} , then the set of all derivations of \mathcal{A} into B(X) is topologically algebraically bireflexive.

Key words: reflexive algebra; derivation; bilocal derivation.

Classification: AMS(1991)47D30,47D15,47B47/CLC O177

Document code: A Article ID: 1000-341X(2001)02-0197-06

1. Introduction

Let X be a Banach space over the complex field and B(X) denote the algebra of all bounded linear operators on X. If \mathcal{B} is a Banach subalgebra of B(X), a linear mapping $\delta: \mathcal{B} \to B(X)$ is called a bilocal derivation if for every $T \in \mathcal{B}$ and $u \in X$, there exists a derivation $\delta_{T,u}: \mathcal{B} \to B(X)$ (depending on T and u) such that $\delta(T)u = \delta_{T,u}(T)u$.

In [1], it was proved that every bilocal derivation of standard operator algebras is an inner derivation.

The main purpose of this paper is to show that if A is a reflexive algebra in reflexive Banach space X such that both $O_+ \neq O$ and $X_- \neq X$ in LatA, the invariant subspace lattice of A, then every norm-continuous bilocal derivation of A into B(X) is an inner derivation.

Motivated by the concept of topological reflexivity of linear space of operators, here we raise the concept of topologically algebraic bireflexivity as follows: If \mathcal{B} is a subalgebra of B(X) and $B(\mathcal{B}, B(X))$ denotes the algebra of all bounded linear operators from \mathcal{B} to B(X). For a subset \mathcal{S} of $B(\mathcal{B}, B(X))$, we write

$$\mathrm{biref}_{at}(\mathcal{S}) = \{\varphi \in B(\mathcal{B}, B(X)) : \varphi(B)x \in \mathcal{S}(B)x, \forall B \in \mathcal{B} \text{ and } \forall x \in X\},$$

where $S(B)x = \{\varphi(B)x : \varphi \in S\}$. The set S is said to be topologically algebraically bireflexive if $S = \text{biref}_{at}(S)$. Therefore our result stated above can be restated that the

*Received date: 1998-07-03

Biography: JING Wu (1969-), male, doctoral student.

E-mail: jingwu@math.zju.edu.cn

set of all derivations of A into B(X) is topologically algebraically bireflexive.

2. Preliminaries and notations

In what follows we denote by X a fixed complex Banach space. The usual notation $Lat\mathcal{B}$ will denote the lattice of invariant subspaces for a subset $\mathcal{B} \subseteq B(X)$, and $Alg\mathcal{L}$ will denote the algebra of bounded linear operators leaving invariant every member of a family \mathcal{L} of subspaces. \mathcal{B} is reflexive if $\mathcal{B} = \mathrm{ref}\mathcal{B}$, where $\mathrm{ref}\mathcal{B} = \{T \in B(X) : Tx \in [\mathcal{B}x], x \in X\}$, $[\cdot]$ denotes the norm closure.

For a lattice \mathcal{L} of subspaces of X, if $N \in \mathcal{L}$, we denote $\wedge \{M \in \mathcal{L} : N \not\subseteq M\}$ by N_{-} and $\vee \{M \in \mathcal{L} : M \not\subseteq N\}$ by N_{+} .

For s subset $S \subseteq X$, $S^{\perp} = \{ f \in X^* : f(S) = \{0\} \}$, where X^* is the dual space of X. If $x \in X$ and $f \in X^*$, the rank one operator $u \longmapsto f(u)x$ is denoted by $x \otimes f$.

Let \mathcal{B} be a Banach subalgebra of B(X), a linear mapping $\delta: \mathcal{B} \to B(X)$ has Property G if $\delta(T)\xi$ is in ran T whenever ξ is in ker T, for all T in \mathcal{B} . Here, ran T and ker T stand for the range and kernal of T respectively.

Lemma 2.1^[3] If \mathcal{L} is a subspace lattice, then $x \otimes f \in \text{Alg}\mathcal{L}$ if and only if there exists an element $L \in \mathcal{L}$ such that $x \in L$ and $f \in (L_{-})^{\perp}$.

3. Bilocal derivations

In what follows \mathcal{A} will be a reflexive algebra in Banach space X such that both $O_+ \neq O$ and $X_- \neq X$ in Lat \mathcal{A} and $\delta : \mathcal{A} \to B(X)$ be a linear map.

Lemma 3.1 If δ has Property G, given $N \in \text{Lat}\mathcal{A}$ with $N \neq O$, then for each nonzero $f \in (N_-)^{\perp}$ there exists a continuous linear functional λ_f^N on X such that

$$\delta(x \otimes f)u = \lambda_f^N(u)x$$
 for any $u \in \ker f$.

Proof Fix $f \in (N_-)^{\perp}$ with $f \neq 0$. As δ has Property G, $\delta(x \otimes f)$ maps $\ker f$ into span $\{x\}$, so there is a continuous linear functional $\lambda_{f,x}^N$ on $\ker f$ such that

$$\delta(x \otimes f)u = \lambda_{f,x}^N(u)x$$
 for any u in ker f .

For any $y \in N$, we have

$$\delta((x+y)\otimes f)u=\lambda_{f,x+y}^N(u)(x+y).$$

On the other hand,

$$\delta((x+y)\otimes f)u=\delta(x\otimes f)u+\delta(y\otimes f)u=\lambda_{f,x}^N(u)x+\lambda_{f,y}^N(u)x.$$

Then we get that

$$(\lambda_{f,x+y}^N-\lambda_{f,x}^N)(u)x+(\lambda_{f,x+y}^N-\lambda_{f,y}^N)(u)y=0.$$

Hence $\lambda_{f,x}^N = \lambda_{f,x+y}^N = \lambda_{f,y}^N$, so $\lambda_{f,x}^N$ is independent of x. We write $\lambda_f^N = \lambda_{f,x}^N$. Therefore λ_f^N can be uniquely extended to a continuous linear functional on X, still denoted by λ_f^N .

Lemma 3.2 If δ has Property G, given $N \in \text{Lat} A$ with $N \neq O$, then for each $f \in (N_-)^{\perp}$, there exists $\lambda_f^N \in X^*$ and a linear mapping $B_f^N : N \to X$ such that

$$\delta(x \otimes f) = x \otimes \lambda_f^N + B_f^N x \otimes f, \ \forall x \in N.$$

Proof For any $u \in X \setminus \ker f$, define an operator $B_{u,f}^N : N \to X$ by

$$B_{u,f}^N x = (\delta(x \otimes f)u - \lambda_f^N(u)x)/f(u),$$

where λ_f^N is defined as in Lemma 3.1.

It is easy to see that $B_{u,f}^N$ is linear. Then we have that

$$\delta(x \otimes f)u = \lambda_f^N(u)x + f(u)B_{u,f}^Nx, \quad \forall x \in N.$$

Take any $v \in X \setminus \ker f$ with $v \neq -u$ and $v \neq 0$, thus for any $x \in N$ we have that

$$\delta(x \otimes f)v = \lambda_f^N(v)x + f(v)B_{u,f}^Nx,$$

and

$$\delta(x \otimes f)(u+v) = \lambda_f^N(u+v)x + f(u+v)B_{u+v,f}^Nx.$$

This yields that $B_{u,f}^N = B_{u+v,f}^N - B_{v,f}^N$. Thus we may take $B_{u,f}^N = B_f^N$.

For any $u \in \ker f$, by Lemma 3.1, we have that $\delta(x \otimes f)u = \lambda_f^N(u)x$. Hence we get

$$\delta(x \otimes f)u = \lambda_f^N(u)x + f(u)B_f^Nx, \quad \forall x \in N \text{ and } u \in X,$$

i.e.,

$$\delta(x \otimes f)u = (x \otimes \lambda_f^N)u + (B_f^N \cdot x \otimes f)(u), \quad \forall x \in N \text{ and } u \in X.$$

Therefore we obtain that

$$\delta(x \otimes f) = x \otimes \lambda_f^N + B_f^N x \otimes f, \quad \forall x \in N.$$

Lemma 3.3 With δ as in Lemma 3.1, given $N \in Lat A$ with $N \neq O$, if f_1 and f_2 are linearly independent elements of $(N_-)^{\perp}$ and if $\lambda_{f_i}^N$, $B_{f_i}^N$, i = 1, 2 are chosen to satisfy the conclusion of Lemma 3.2 for f_1 and f_2 respectively, then $B_{f_1}^N - B_{f_2}^N$ is a scalar multiple of the identity.

Proof Clearly it suffices to show that for each $x \in N$, $(B_{f_1}^N - B_{f_2}^N)x$ is a scalar multiple of x. By Lemma 3.2, there exist $\lambda_{f_1+f_2}^N \in X^*$ and a linear mapping $B_{f_1+f_2}^N : N \to X$ such that

$$\delta(x \otimes (f_1 + f_2)) = x \otimes \lambda_{f_1 + f_2}^N + B_{f_1 + f_2}^N x \otimes (f_1 + f_2).$$

But we also have,

$$egin{aligned} \delta(oldsymbol{x}\otimes(f_1+f_2)) &= \delta(oldsymbol{x}\otimes f_1) + \delta(oldsymbol{x}\otimes f_2) \ &= oldsymbol{x}\otimes\lambda_{f_1}^N + B_{f_1}^Noldsymbol{x}\otimes f_1 + oldsymbol{x}\otimes\lambda_{f_2}^N + B_{f_2}^Noldsymbol{x}\otimes f_2. \end{aligned}$$

Taking adjoints yields that

$$\lambda_{f_1+f_2}^N \otimes x + (f_1+f_2) \otimes B_{f_1+f_2}^N x = (\lambda_{f_1}^N + \lambda_{f_2}^N) \otimes x + f_1 \otimes B_{f_1}^N + f_2 \otimes B_{f_2}^N x.$$

For every h in $\{x\}^{\perp}$, let the two sides of the above equation act on h, we obtain

$$h(B_{f_1+f_2}^Nx)(f_1+f_2)=h(B_{f_1}^Nx)f_1+h(B_{f_2}^Nx)f_2,$$

and the linear independence of $\{f_1, f_2\}$ implies that $h(B_{f_1}^N x - B_{f_2}^N x) = 0$. But h is an arbitrary element of $\{x\}^{\perp}$. Thus $(B_{f_1}^N - B_{f_2}^N)x$ is a scalar multiple of x, as desired. \square

Lemma 3.4 With δ as in Lemma 3.1. For each $N \in \text{Lat}\mathcal{A}$ with $N \neq O$, there exists a linear mapping $B_N : N \to X$ with the property that for each functional $f \in (N_-)^{\perp}$ there is a functional $\lambda_f^N \in X^*$ such that

$$\delta(x \otimes f) = x \otimes \lambda_f^N + B_N x \otimes f$$
, for each $x \in N$. (*)

Proof Fix a nonzero element $f_0 \in (N_-)^{\perp}$. By Lemma 3.3, there is a functional $\lambda_{f_0}^N \in X^*$ and a linear mapping $B_{f_0}^N : N \to X$ such that

$$\delta(x\otimes f_0)=x\otimes\lambda_{f_0}^N+B_{f_0}^Nx\otimes f_0.$$

Let $B_N = B_{f_0}^N$. Therefore equation (*) holds for f_0 and also, holds for scalar multiples of f_0 by linearity.

On the other hand, if f and f_0 are linearly independent, let λ_f^N and B_f^N satisfy the conclusion of Lemma 3.2. Then by Lemma 3.3, $B_f^N - B = \mu I$ for some scalar μ . So for each $x \in N$, we have

$$\delta(\boldsymbol{x}\otimes f)=\boldsymbol{x}\otimes(\lambda_f^N+\mu f)+B_N\boldsymbol{x}\otimes f$$

and equation (*) is satisfied for f with λ_f^N replaced by $\lambda_f^N + \mu f$.

Lemma 3.5 With δ as in Lemma 3.1. Given $N \in \text{Lat}\mathcal{A}$ with $N \neq O$, there exist linear mappings $B_N : N \to X$ and $C_N : (N_-)^{\perp} \to X^*$ such that

$$\delta(x \otimes f) = x \otimes C_N f + B_N x \otimes f, \ \ \forall x \in N \ \ \ ext{and} \ \ \ f \in (N_-)^{\perp}.$$

Proof Fix a nonzero vector $x \in N$ and fix $h \in X^*$ such that h(x) = 1. For each $f \in X^*$ the functional λ_f^N in (*) of Lemma 3.4 is given by

$$\lambda_f^N = (\delta(x \otimes f) - B_N x \otimes f)^*(h)$$

where B_N is as in (*). Therefore the map $f \to \lambda_f^N$ is linear. We call the map C_N , the proof is complete. \square

Using the same proof in [4], we obtain

Lemma 3.6 If X is reflexive and $\delta: \mathcal{A} \to B(X)$ is a norm-continuous linear mapping

having the Property G, then there exist operators $A, B \in B(X)$ such that $\delta(x \otimes f) = Ax \otimes f + x \otimes fB$ for any $x \in X$ and $f \in (X_{-})^{\perp}$ or any $x \in O_{+}$ and $f \in X^{*}$.

Theorem 3.7 If X is reflexive and $\delta: A \to B(X)$ is a norm-continuous linear map having the Property G, then there exist $A, B \in B(X)$ such that $\delta(T) = AT + TB$ for any $T \in A$.

Proof By Lemma 3.6, we have that $\delta(R) = AR + RB$ where R is a finite linear combination of rank one operators of the form $x \otimes f$ with $x \in X$ and $f \in (X_-)^{\perp}$ or $x \in O_+$ and $f \in X^*$.

Let $\varphi : \mathcal{A} \to B(X)$ be defined by $\varphi(T) = AT + TB$ for every $T \in \mathcal{A}$, and let $\psi = \varphi - \delta$. Now we show that $\psi = 0$.

It is obvious that $\psi(R) = 0$ for every above-mentioned R.

Fix $T \in \mathcal{A}$ such that $\psi(T) \neq 0$, then there exists a nonzero vector $\mathbf{x} \notin X_{-}$ with $\psi(T)\mathbf{x} \neq 0$. And so there is a nonzero functional $f \in (X_{-})^{\perp}$ such that $f(\mathbf{x}) = 1$. And so $P = \mathbf{x} \otimes f$ is a projection in \mathcal{A} .

(1) Let $g \notin (O_+)^{\perp}$. Then there is $y \in O_+$ such that g(y) = 1. we get that $Q = y \otimes g$ is also a projection in A. For each $T \in A$, by the hypothesis on δ we have that

$$Q\psi((I-Q)T(I-P))P=0.$$

But T - (I - Q)T(I - P) has the form of R, so

$$\psi(T-(I-Q)T(I-P))=0,$$

i.e.,

$$\psi(T) = \psi((I-Q)T(I-P)).$$

Hence $Q\psi(T)P=0$ and so $g(\psi(T)x)=0$ for each $g\notin (O_+)^{\perp}$.

(2) Let $g \in (O_+)^{\perp}$. If $\psi(T)x \in O_+$, then

$$g(\psi(T)x)=0.$$

If $\psi(T)x \notin O_+$ and $g(\psi(T)x) \neq 0$, there is $h \notin (O_+)^{\perp}$ such that $h(\psi(T)x) = 0$. Then

$$g+h\notin (O_+)^{\perp}$$
 and $(g+h)(\psi(T)x)\neq 0$.

This is in contradiction with (1).

It follows that $g(\psi(T)x) = 0$ for every $g \in X^*$. And so $\psi(T)x = 0$, a contradiction. \Box

Theorem 3.8 If X is reflexive and $\delta: A \to B(X)$ is a norm-continuous bilocal derivation, then δ is an inner derivation.

Proof Since δ is a bilocal derivation of \mathcal{A} into B(X), and by Theorem 3.1 of [4], every derivation of \mathcal{A} into B(X) is inner, then δ satisfies the condition of Theorem 3.7. Hence there exist operators $A, B \in B(X)$ such that $\delta(T) = AT + TB$ for any $T \in \mathcal{A}$. Then $A + B = \delta(I) = 0$, thus B = -A, so δ is an inner derivation. \square

Corollary 3.9 If X is a reflexive Banach space, then the set of all derivations of A into B(X) is topologically algebraically bireflexive.

Acknowledgment The authors are grateful to Professor Lu Shijie for his help and encouragement.

References:

- ZHU Jun, XIONG Chang-ping. Bilocal derivations of standard operator algebras [J]. Proc. Amer. Math. Soc., 1997, 125: 1367-1370.
- [2] LARSON D R. Reflexivity, algebraic reflexivity and linear interpolation [J]. Amer. J. Math., 1988, 110: 283-299.
- [3] LONGSTAFF W E. Strongly reflexive subspace lattices [J]. J. London. Math. Soc., 1975, 11: 491-498.
- [4] JING Wu. Local derivations of reflexive algebras [J]. Proc. Amer. Math. Soc., 1997, 125: 869-873.
- [5] SPIVACK M. Certain properties of derivations [J]. Proc. Amer. Math. Soc., 1987, 99: 712-718.
- [6] LARSON D R, SOUROUR A R. Local derivations and local automorphisms of B(X) [J]. Proc. Sym. Pure Math., 1990, 51: 187-194.

自反代数的双局部导子

荆 武1, 王晓静2

(1. 浙江大学数学系, 浙江 杭州 310027; 2. 烟台师范学院数学系, 山东 烟台 264025)

摘 要: 证明了自反 Banach 空间 X 中自反代数 A 到 B(X) 的导子集合是拓扑代数双自反的.