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1. Introduction

In 1984, Charalambides and Koutras? obtained some combinatorial and statistical
applications of the Gould-Hopper numbers G(n, k;7, s). One interesting application is the
occupancy distribution which is useful in biology and reliability.

Recently, L.C.Hsu and P.J-S.Shiuel® defined a kind of generalized Stirling numbers
S§(n,k) = S(n,k; a,B,v) and established several properties analogous to that of the clas-
sical one. More properties were obtained by R.B.Corcinol®. The Gould-Hopper numbers
can be considered as Stirlingtype numbers, in the sense that it can be expressed in terms
of S(n,k;a,B,7) with a = 1,8 = r,v = s. In particular, we have

G(n,k;r,s) = rkS(n, k;1,r,s).

This motivates the authors to investigate the analogous combinatorial and statistical ap-
plications of the generalized Stirling numbers.

In this paper, we will discuss some combinatorial and statistical applications of the
generalized Stirling numbers S'(n,k) parallel to that obtained by Charalambides and
Koutras for the Gould-Hopper numbers.

2. Preliminaries
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Let us define the generalized Stirling numbers S(n,k;a,3,7) based on the definition
of L.C. Hsu and P.J-S. Shiuel® as follows

n
(tla)ﬂ = Z S(n,k;a,ﬂ,‘y)(t - 7Iﬂ)n)
k=0
where a,f,7 may be real or complex not all zero and (t|a), denotes the generalized
factorial of the form

n-~1
(tla)a = J[(t-ja), n2>1
3=0
with (t|a)o = 1. In particular, (¢[1), = (¢)» and (t)o = 1.
We need the following results from [6]:
[R1] B*ELS(n, k; 0,8, 7) = Tiso(~1)* (3) (B + 7la)n;
[R2] BREN(=1)"**S(n, k; o, =B, ~7) = Tio(~1)**(})(Bi + 7| — a)n (This is a direct
consequence of [R1] );
[R3] (B +7la)n = SiLo(k)iB*S(n, 50, 8,7);
[R4] or(z) = Xpr SH(n -1,k ~ 1)(3’431)'l = (z—':lﬂ)b .

3. Combinatorial interpretations

Let a, 8,7 be nonnegative integers with a dividing both 8 and 7, that is, a|8, aly.

Distributing balls into cells.

Consider k + 1 distinct cells, the first k of which each has 8 distinct compartments,
and the last cell with y distinct compartments. The compartments in each cell are given
cyclic ordered numbering and

(A1) the capacity of each compartment is limited to one ball.

Suppose we distribute n distinct balls into the k + 1 cells, one ball at a time such that

(B1) each successive a available compartments in a cell can only have the leading
compartment getting the ball

(C1) the first k cells are nonempty.

Nlustration of (B1):

Suppose the first ball lands in compartment 3 of cell 2. The compartment numbered
4,5,6,---,a,a+1,a+2 will be closed. And suppose the second ball lands in compartment
B —2 also of cell 2. Then compartments numbered 8-1,4,1,2,a+3,a+4,a+5,---,2a—3
of cell 2 will be closed.

Problem How many ways can we distribute n distinct balls into k + 1 distinct cells one

ball at a time under restrictions
(i) (A1) and (B1)?
(ii) (A1), (B1), and (C1)?

Solution of (i) Let Q be the set of all possible ways of distributing the n balls under
restrictions (A1) and (B1). Then

10 = (Bk +7)(Bk +7 - a)(Bk + 7 —2a)---(Bk+ 7 - (n— 1)a)
= (Bk + vla)n.

— 338 —



Solution of (ii) Define property Pi(i = 1,2,3,:--,k):
P; holds ¢ ith cell is empty

Let w(s) be the number of outcomes in  satisfying at least s properties, that is, at least
s out of k cells are empty. Then

w(s) = (’”) (B(k - )+ l)n.

By Principle of Inclusion and Exclusion, the number of outcomes in  satisfying none of
the k& properties, that is, none of the first k cells is empty, is

k k
~ifkY, ..
S (-1)(s) = Y (-1)* (i)(ﬂz +7la)n
=0 1=0
= B*k!S(n, k; @, B,7) for [R1]. O
These results are embodied in the following proposition.

Proposition 1 Let Q be the sample space associated with above problem satisfying A(1)
and (B1). Then

12| = (Bk + 7]@)a
and the number of outcomes in Q satisfying (C1) is
Eq(0) = B*k!S(n, k; a, 8,7)

with a > O,ﬂ,‘)’ 2 Oaa'ﬂ’a‘7'

Suppose we modify conditions (A1) and (B1) as follows

(A1)* capacity of each compartment is unlimited.

(B1)* after a ball lands in a compartment, this compartment splits into a + 1 com-
partments, each of unlimited capacity.

Then using similar argument we used to solve the preceding problem, we can easily
prove the following proposition with the help of [R2].

Proposition 2 Let Q* be the new sample space satisfying (A1)* and (B1)*. Then
0] = (Bk + 7] - @)
and the number of outcomes in Q* satisfying (C1) is
E3(0) = A*kY(=1)"*S (n, k3, 8,7)
with a, 8,7 > 0.

Remark Proposition 1 and 2 subsume the results of Charalambides and Koutras!?! with
a = 1. Clearly, the number of surjections k!S(n, k) and the combinatorial interpretations
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mentioned in [5] for §(n, k) can be deduced from Proposition 2 by puttinga =y =0,8=1
with cells assumed to be indistinguishable and knowing that

(=1)"**S$(n, k;0,-1,0) = S(n, k;0,1,0) = S(n, k).

Drawing balls from an urn.

Consider an urn containing k + 1 types of balls such that there are 8 distinct balls for
each of the first k types and 4 distinct balls of the last type. The balls in each type are
given cyclic ordered numbering. Suppose that n balls are drawn from the urn.

(A2) one after the other without replacement

(B2) each draw automatically includes the successive available a — 1 balls of the same
type

(C2) the first k types of balls are represented in the sample drawn.

We then have the following proposition.

Proposition 3 Let T' be the sample space of the preceding experiment satisfying (A2)
and (B2). Then

IT| = 2] = (Bk + 7]|a)a
and the number of outcomes in T satisfying (C2) is
Er(0) = B*k!S(n, k; 0, 8,7)

with a > 0,8,y > 0,a|8, aly.
Suppose we modify the conditions (A2) and (B2) as follows
(A2)* one after the other with replacement
(B2)* each draw automatically puts back a distinct balls of same type drawn.
The following proposition follows immediately.

Proposition 4 Let I'* be the new sample space satisfying (A2)* and (B2)*. Then
IT*| = 19%] = (Bk + 7] = a)n
and the number of outcomes in T'* satisfying (C2) is
Ef(0) = AR (=1)"**5(n, k; o, B, 7)
with a > 0,8,7 > 0.
4. Probability distributions and unbiased estimators

Throughout this section,  and Q* refer to the sample spaces in Section 3.

Occupancy distribution.

In the experiment with Q as the sample space, let X be the number of occupied cells
among the first k£ cells. Then we have

Proposition 5 The probability function of X is

(k)iﬁks(na 2) a, ﬂ, 7)
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where i = 0,1,2,-.- ,min{n, k}.

Proof Using the combinatorial interpretation given in Proposition 1 and (R3) in Section
2 with (k); =0fori=k+1,k+2,---, we have

k
> P(iln, k;a,8,7) = 1. 0
i=0
The content and proof of the following proposition is analogous to that of Proposition
5.

Proposition 6 The probability function of X* (=number of occupied cells among the
first k cells in the sample space Q*) is

_ (k),ﬂ'lS(n, i, —f, —7)|

P*(iln,k;a, B,7) = Gt —an

where i = 0,1,2,.-- ,min{n, k}.
The next proposition gives us the unbiased estimator of the number k of cells when
k<n.

Proposition 7 An unbiased estimator of the number k of cells (k < n) associated with
the random sampling defined on (Q is
S(n+1,40,8,7) na-v

B5(miaBy) B

p(i,n) =

where: =10,1,2,--- k.

Proof It suffices to show
- Elu(i,n)] = k. ((*))

We know that
n+1l

Elp(i,n)] = Y p(i,n)P(iln, k; @, 8,7)-

1=0

Using [R3] in Section 2 and Proposition 5, we easily obtain (x). O

Proposition 8 An unbiased estimator of the number k of cells (k < n) associated with
the random sampling defined on Q* is

wis oy 1S(nt+1,5a,-8,-7) naty
W) = i B B

where i = 0,1,2,---, k.

The proof of Proposition 8 is analogous to that of Proposition 7.

Sequential occupancy.

In the experiment with © as the sample space, suppose that distinct balls are sequen-
tially distributed into the k 4 1 cells until a predetermined number i of cells among the
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first k cells is occupied by at least one ball. Let Y be the number of balls required. Then
we have

Proposition 9 The probability function of Y is

(k),’ﬂiS(n - lai — 1;a’ﬁa7)
(Bk + 7la)n ’

Q(n]i, k; a,ﬂ’7) =

where n = iai+ 11"'1§(i— 1)+ % +1.
Proof By multiplicative rule, we have

- o _ Bk —(i-1))
Q(nl‘l,k,a,ﬂ,‘)‘) = P(" - lln - lakraaﬁa7)ﬁk +9-— a(n _ 1)
_ (k),ﬁ‘S(n -1,1— l;aaﬂ77)
(Bk + 7la)n
Using [R4] with z replaced by Bk + 4, we can easily prove that Q(n|i,k;a,B,7) is a

probability function. O
With respect to the experiment with 2* as the sample space, we have

Proposition 10 The probability function of Y is

k)iBS(n—1,i — L&, —f, =7)|

@ (i ki, ,7) = EEE iRl

wheren =1,i4+ 1,14+ 2,---.

Coupons collector problem.

Consider an urn containing k + v distinct types of coupons, each type with 8 distinct
coupons. Let the coupons in each type be given cyclic ordered numbering. Suppose that
n coupons are drawn from the urn one coupon at a time without replacement such that
each draw automatically includes the successive available a — 1 coupons. Let Z be the
number of types among k specified kinds appearing in the sample. Using Proposition 3
with ¥ = Bv, we have the following probability function of Z which can be proved using
the argument as that in Proposition 5.

Proposition 11 The probability function of Z is

ki iS a.;a’ PV
p(in, k;a,B,v) = ( )fﬂk(:;ﬂafnﬂ ),

where i = 0,1,2,--- ,min{n, k}.

Suppose that the coupons are drawn one after the other without replacement and
that each draw automatically includes the successive available a — 1 coupons until a
predetermined number i of types among the k specified types apper in the sample. Let
Z* be the number of coupons required. As in Proposition 9 putting ¥ = fv, we can easily
prove the following proposition.
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Proposition 12 The probability function of Z* is

(k).ﬂiS(n -1,i— l;a,ﬂ,ﬁu)
(Bk + Br|a), ’

p*(n|i, k;a,0,v) =

wheren =i,i+1,---,8(i - 1)+ & + 1.

The foregoing results are in fact a kind of generalization of those obtained by Char-

alambides and Koutras in [2].
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