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Abstract: In this paper the linearly topological structure of Menger Probabilistic inner
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1. Introduction

The conceptions of probabilistic inner product space (briefly, PIS) were introduced in
(1] , [2], [5)- And some different notions PIS were introduced in [3],[4],[6] successively.
We feel that the definition of the PIS in [4] is reasonable, for it keeps in contact with
the concept of Menger PN space and the notion of usual real inner product space can be
included in much more general setting of such a PIS. It is known that, since t-norm A
(A(a,1) = a) that satisfies A(t,t) > t implies A = min, some results will be not general
under the condition A(t,t) > t. The purpose of this paper is to discuss the linearly
topological structure of Menger PIS under weaker t-norm conditions, and to establish
orthogonal projective theorem in Menger PIS.

2. Preliminaries

Throughout this paper, D denotes the set of all left-continuous distribution functions;
R = (—00,+); Rt = (0,400); Do = {F: F € D,F~Y(1) # 0}; H(t) € Do: H(t) = 0 if
t<0and H(t) =1if t > 0; Z* stands for the set of all positive integers; “iff” means “if
and only if”, “a.e.” means “almost everywhere”.
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Definition 2.1% For a mapping A : [0,1] x [0,1] — [0,1], A is called a t-norm if
Va,b,¢c,d € [0,1]:

(A-1) A(a,1) = q;

(A-2) A(a,b) = A(b,a);

(A-3)c > a,d > b= A(c,d) > A(a,b);

(A-4) A(a,A(b,c)) = A(A(a,bd),c).

Definition 2.2 (cf. [4]) A PIS is a ternary (E,F,A), where E is a real linear space,
A is a t-norm; F, E X E — D is a mapping written by F,, with z € E andy € E,
Ve,y,z € E, (E,F,A) satisfies:

(PI-1) F; 2(0) = 0;

(PI-2)Vt € R, F, .(t) = H(¢t) iff z = 6;

(PI-3) Fppy = Fy o;

Fﬁ:,y (%) (h > 0)’
(PI-4) Vh € R, Fpoy(t) = (t) (h=0),
v (F4) (R <0);
(PI-5) Fyiy:(t) =  sup A(F“(s), Fyx(r)).
s+r=t;s,r€ER

Example 2.1 (cf.[4]) Let (E,(-,-)) be a usual real inner product space, F be defined by
Fyy(t) = H(t — (z,y)), A be a t-norm. Then (E,F,A) is a PIS.

Definition 2.3 (cf.[4]) Let (E,F,A) be a PIS, z,y € E. If F,,(t) = H(t) (Vt € R),
then z and y are said to be arthogonal and written ¢ L y. Similarly for M C E we write
Ll Mife Ll yforVye M.

Definition 2.4 Let (E,F,A) be a PIS. If

(PI-6) Vz,y € E imply F,,(ts) > A (F; .(t?), Fy4(s?)) a.e. in RY, then (E,F,A) is
called a Menger PIS . If

(PI-6s)Ve,y € E,Vt,s € RY, F,,(ts) > A (F; .(t*), F, 4(s?)), then (E, F,A) is called
a strong Menger PIS .

Example 2.2 Let (E,F,A) be a PIS | then (i) A = min = (E,F, A) is a Menger PIS
. (ii) A = product = (E,F,A) is a Menger PIS.

Proof Set h = —t/s (h < 0), a = F;4(t?),d = Fyy(ts+), b = Fopy(hts) =1-d, c =
Fhyhy(h?s?) = Fy,(s?). By (PI-5) we have 0 = Fyypy oiny((t+hs)?) > A(A(a,b), A(b, c)).
Then,

(i) A = min = min(e,1 - d,c) = 0 = d > min(a,c);

(ii) A = product = a(1 — d)%c = 0 = d > ac.
Since a distribution function is almost everywhere continuous , the proof is complete.

Example 2.3 (cf.[4]) Let (E,F,A) be a strong Menger PIS, A = min, f: E — D be
a mapping defined by f.(t) = 0if t < 0 and f.(t) = F,.(t?) if t > 0. Then (E, f,A) is
Menger PN space.

3. Main results
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Lemma 3.1 Let (E,F,A) be a PIS. @ € (0,1}, ¢ > 0, N(e,a) = {z € E : F;z(¢?) >
1- a}. Then

(i) N(s,a) = eN(1,a); (ii) &1 < €2 = N(e1,a) C N(ez,a); (i) on < a7 =
N(e,a;) C N(g,az).

Proof These follow from Definition 2.2 .
Theorem 3.2 Let (E,F,A) be a Menger PIS, sup A(b,b) = 1. Then (E,F,A)is a

first-countable Hausdorff linear topological space whose neighbourhood base of origin is
{N(e,a): ¢ >0,a €(0,1]} .

Proof (cf. [7]) We will prove the following (i-vi) .

(i) By Lemma 3.1, VW; = N(e1, a1) and Wy = N(ez, az), where ag = {1, a1, €2, 2}:
Wo C Wi an.

(ii) For VW = N(e,a), by iupA(b,b) = 1, Jay € (0,a),a; € (0,a1),a3 € (0,):

<1

A(l—-al,l—al) >1-a, A(l—az,l—a2)>1—-a1,a.ndA(1—a3,1—a3) >1-— as.
By (PI-6), 36 € [¢/4,¢/2]: Foy(6?) > A(Fy.(62), Fyy(82)). Hence, IW, = N(e/4,a3),
Vzay € Wl z,m(52/4) 2 F:c,:l:( 2/16) >1- Qs Z 1- a2,
Likewise, Fy ,(e%2/4) > 1 — a3, and

Fz,y(52/4) 2 Fa—',y(52) 2 A(F:t,x(62) ( yy(62)) > A(F;, w(ez/lﬁ) Fyy(e 2/16))
Z A(l—a3,1—a3) Z 1—(12.

Thus, by (PI-5) and (A-3) ,

Frpyaty(e) 2 A (A(Foa(e2/4), Foy(e7/4)), Al Fay(£/4), Fyy(e?/4)))
Z A(A(l et az,l - az),A(l - a2,1 - (12)) > A(l - a1,1 - 01) >1- «a,

showing that W, + W, C W.

(iii) For VW = N(e,a), VA€ R, |A| < 1: if A = 0, then OW = {8} C W if A # 0, then
AW = N(|Ale,a) C W (Lemma 3.1).

(iv) For VW = N(¢,),Vz € E: since lim Foo(t) = 1, 3o, Fpx(t3) > 1 — a. Set
A = g/to, then Fyzaz(€?) = Fr2(t2) > 1 — o, namely Az € W.

(v) By (PI-2), if Vz € E, z # 8, then 3X € (0,1], Jeo > 0: F, 4(e3) < 1— ap, showing
that z ¢ N(eo, ap).

(vi) {N(e,a) : € > 0,a € (0,1],¢ and a are rational numbers} is countable .

Corollary 3.3 If A = min, then strong Menger PIS (E,F,A) is a locally convex Haus-
dorff linear topological space .

Proof By Theorem 3.2 and Lemma 3.1, we will only prove N(1,«) is convex. In fact,
Vz,y € N(1,a), YA € [0,1]: set @ = Fyz5o(A) = Foa(l), b = Fyg1-x, (A1 — X))
= Foy(1), ¢ = Faoay,a-xy((1 = A)?) = F,4(1). Since A = min, by (PI-6s) we have
b > min(a,c). Hence Fy pa-ayact(1-0p(1?) = Frara-apazra-xg{(d + {1 = N))?) >
min(min(a, b), min(b, ¢)) = min{a,c,b} > min{a,c} > 1 — a. Namely Az + (1 — Ay €
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N(1,a).
Definition 3.1 Let (E,F,A) be a Menger PIS, sup A(b,b) = 1.
<1
(i) A sequence {z,} C E is said to converge to z € E, denoted by nlj_x’rgo z, =

z, if V¢ > 0,Va € (0,1}, AN € Z¥*V¥n > N, F; _,..-:(¢?) > 1 — a (equivalently
lim F’n"otn_z(t) - H(t))

n—+00

(i) A sequence {z,} C E is called a Cauchy sequence if Ve > 0, Ya € (0,1], 3N € Zt,
Vm,n > N, F;—zp 2r—z.(€2) > 1 — a (equivalently lim Frp—znzm—za(t) = H(L));

A C E is said to be complete if every Cauchy sequence in A converges in A.
Theorem 3.4 Let (E,F,A) be a Menger PIS, Va € (0,1], sup A(b,a) = a (implying
b1
sup A(b,b) = 1), lim z, = z. Then
(i)Vy € E, “li{{.‘o Faoy(t) = Fzy(t) ae.; (ii) nlﬂgo Fopaa(t) = Fzz(t) ace
Proof Since Vy € E, tlim F, ,(t) =1, we have
— 00

Va € (0,1],3t0 > 0: Fyu(t3) > 1 - a. (1)

By (PI-6), Ve > 0,38 € (0,¢), and we have F;,_.,(8) > A(Fop-zzn-2(62/83), F, ,(t3)).
Letting n — o0, by lim F;,_;z,o(6?/t]) = 1 and sup A(b,a) = a, we have

. . 2
h,{‘_‘,{;}f an—z,y(‘s) 2 Fyyu(to)- (2)

Since F;,_:,(t) is nondecreasing function on R,(1) and (2) imply that

B Ferasf©) = 1 ®
Likewise
ull,I{;on zap(€) = 1. (4)

Note that F.,(t) is left-continuous. By (PI-5), (3) and sup A(b,a) = a, we obtain
b<1
Fopy(t) = Frpzioy(t) 2 A(Frp-zy(e), Foy(t —€))

liminf Fy, () > Fay(2). (5)

Now without loss of generality we may assult P = hm n sup F;,4(t) > 0, then Vg € (0, P), 3
subsequence {z,,} C {za}, Vk € Z*: F,, ,(t) > P 1] By (PI-5), (4) and sup A(b,a) =
b<1

a, we get
Foy(t+e) = Fz—zn,+=n,,y(€ +t)2A (Fz—znk,y(e)ernk.y(t)) 2 A (Fr—mnk,y(e)ap - ’7) )

limsup F;, ,(t) < Fz ,(t+). (6)
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Then (5) and (6) show Jim Fp, y(t) = Fpu(t) ace.
(ii) For Ve > 0, since

Frn220(€) = Fon-zza-2+2(€) 2 A (Fru—z,20-2(6/2), Fra-z,2(€/2)),

by (3) and sup A(b,b) = 1, we have
b1

nll,ngo Fopcza(€) = 1. (M
Likewise
nlf_flc}o Frgpeale) =1 (8)

Using Theorem 3.4(i), we have 3§ € (0,¢):
i Faan(t = 6) = Faa(t - 8) (9)

Jim Fp o, (t+68) = Foolt + 6). (10)
There is no harm in supposing L = F, z(t — §) > 0. Then by (9), V9 € (0, L),3N € Z*,
Vo> N: F;;,.(t —8) > L —n. By (PI-5), (7) and :1<111) A(b,a) = a, we obtain
Fopaa(t) = Fopzyopa(6+t—8) 2 A(Fop-z.0,(8), Foza(t — 6)) 2 A(Fop—z2a(6), L — 1),
liminf F,_ o,(t) 2 Fzq(t - 8). (11)
There is no harm in supposing @ = limsup F,, ,.(t) > 0. Then V5 € (0,Q), 3 subsequence
{zn,} C 2a, Vk € Zt: F, (t) >n_Qm— n. By (PI-5), (8), (10) and iléll) A(bya) = a we

TngTn,
get
Fz’z"k (t + 6) = Fz—z,,k-i-z,.k vzﬂk (6 + t) Z A(F —zﬂkvzllk (6)7 quk 1z'lk (t))
2 A(Fz—z"b Eng (5)1 Q - 7])1
limsup F;, 2, (t) < Fzo(t + 7). (12)
n—oo

Letting € — 0, then § — 0, (11) and (12) show Jhm Fypza(t) = Fo 2(t) ace. .

Theorem 3.5 Let (E,F,A) be a PIS and F map E into Dy, an inner product on E be
defined by (z,y) = inf{t : F,,(t) = 1}. Then (E,(-,-)) is a classical inner product space,
andz Ly iff (z,y) = 0.

Proof (cf. [8]) (IP1) We set a = (z:z>’ B = (y,z), n={z+ y’z)a Ve > 0. Since Fz.z(a +
£¢)=1and F,.(B+ %) =1,by (PL-5), Foyy.(a+B8+¢€) > A (Fzz(a+ £), F =B+ %))
Namely Fp4y.(a + B +¢€) = 1. Hence,

n<a+pf+e. (13)
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On the other hand, since (A-1, 2, 3)== A < min,

1=Foyp.(n+e)= sup A(Fz,:(s), Fy:(t)) < supmin(F, .(n+ € — t), F, ,(t)).
s+t=n+e;8,tER teER

Then,
1 1
Vne Zt,3t, € R: Fp(nt+e—ty) > 1— o F () >1- e (14)
Hence, {¢,} is a bounded real sequence. Otherwise if {t,} is unbounded, we will have

F;:(~00) =1or F, ;,(—o0) = 1 by (14), this provides a contradiction. Thus 3 subsequence
{tn.} C {to}: klim tn, = to, [to] < +oo. By (14), 3N € Z+,Vk > N: F,,(to + €) >
— 00

F,.(t,,) >1- n’—;; Fr(n+2e—to) > Fp(nt+e—ty)>1- an . Letting k — oo, we get
that Fy ,(to+e)=1and F, ,(p+2 —tp) =1. Namely
bote>Bn+2—t2a=a+pB<n+3 (15)

By (13) and (15) we obtaina + 8 = 7.

(IP2) If h = 0, by (PI-4), Fy,(t) = H(t), i.e., (8,y) = 0, then (0z,y) = (B,y) =0
0{z,y); if b > 0, by (PI-4), Fyz,(t) = Fy, (#), then (hz,y) = inf{t : F,, () =1} =
h(z,y); if h < 0, by (IP1), (ke,y) + (~he,y) = (6,y) = 0, then (hz,y) = —(—hz,y) =
h{z,y).

The proof of (IP3) and (IP4) are routine. Finally, z 1 y iff Fu(t) = H(t) iff (z,y) = 0.

Theorem 3.6 (Pythagorean theorem) Let (E,F,A) be a PIS, z L y. Then

Fz+y,9:+y(t) = sup A(Fz.x(s)a Fy,y("))-
s+r=t;s,rER

Proof By F;,(t) = H(t) , (PI-5) and (A-1) we have

Fexts$) = 5w A(Feu(u), Fey(v) = s6p A(Frals = v), H(v)

utv=s;u,ve
= sup Fp (s — v) = Fy .(s).
v>0

Similarly Fy.4,(r) = F, ,(r). Hence,

Fotyaty(t) = sup A(Fz,z+y(3)’ Fyziy(r)) = sup A(Fpz(s), Fyy(r)).
s+r=t;s,rcR s+r=t;s,reR

Theorem 3.7 (projective theorem) Let M be a complete linear subspace of a Menger
PIS (E,F,A), Va € [0,1], supA(b,a) = a, F map E into Dy , = € E. Then 3 unique
b<1

Zo € M: (z — 20) L M (¢ is called the orthogonal projection of z on M) and

Fr 242z (t) = sup Fx—u,m—y(t) (16)
yeM
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Proof If 3z € M, (z —20) L M ,thenVy € M,z —y = (2 — 20) + (2o — y). Since
(zo—y) € M, (2 — 20) L (20 — y), using Theorem 3.6,
Foeyazy(t) = sup A(Fz—zq,2—20(8)s Foo—pzo-y(T))
s+r=t;s,r€ER
< sup A(Frogz-z(s), H(r))
s+r=t,s,r€R

= sup F:t—a:o,:l:—:to (t - T') = Fz—zo,z—zo (t)
r>0

Note that 29 € M, Fo_zyz-2,(t) € {Fe-yz-y(t) : ¥ € M}. Thus (16) holds. Ap-
plying Theorem 3.5 and the projective theorem of the classical inner product space, we
will only prove that M is complete in (E,(-,-)). Suppose {z,} C M is a Cauchy se-
quence in (E,(-,-)). Then Ve > 0,AN € Z* ¥Ym,n > N, (2, — Zm,Zn — Zm) = inf{t :
Fup 2 zn—zm(t) = 1 < €2} , namely

qu—zm,zn—zm(ez) =1 (17)

Thus {z,} C M is also a Cauchy sequence in (E, F,A). Since M is complete in (E,F,A),
it shows that lim z, = z € M. Using Theorem 3.4 , 3ty € [¢2,2¢2], from (17), we have

Frozzp-z(to) = lim F s, s.—2,.(toc) = 1. Namely Ve > 0,3N € Z*, ¥n > N,
mMm—0o0
(Tn — 2,25 — z) < to < 2¢2. This completes the proof .
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