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Abstract: This paper, we discuss a class of second order nonlinear neutral differential
equations with variable coeflicients and variable deviatious. Sharp conditious are estab-
lished for all bounded solutions of the equations to be oscillatory. Linearized oscillation
criteria of the equations are also given.
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1. Introduction

Consider the second order nonlinear neutral differential equation

m

dtz ZP(t (t-m)] = H[fj (t = o (O]t > to, (1)

where 7; > 0, Pi(t),Q(t),0;(t) € C([to,),R*),f; € C(R,R),yf;j(y) > O0(y # 0),a; > Ois
a rational number whose denominator is odd, lim;~(t — 0(t)) = 00,7 = 1,2,...,m,j =
1,2,...,n,and 337 a; = 1.

Definition 1 If

lim Pi(t) = pi(i = 1,2,...,m), lim Q(t) = (2)
lim fi(y)/y = 1(j = 1,2,...,m), (3)

then we call the equation

d') m n
() Zptyt—n = H (t—a))™ (4)
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is the “limit” equation of (1) when o(t) = o is a constant (j = 1,2,...,n).

Recently a linearized oscillation theory has been developed in [1-5, etc.] for nonlinear
differential equations. Roughly speaking, it has been proved that, under appropriate
hypotheses, certain nonlinear differential equations have the same oscillatory character
as the associated linear equations. Qian and Yu!® studied the oscillation of all bounded
solutions of the special cases of (1) where m = n = 1, where their argument depends on the
identical transformations of the equations. However, there is no similar transformation of
(1). Soin this paper, by using a method which is different from [5, 6], we establish sufficient
conditions for all bounded solutions of (1) to be oscillatory, and the conditions are sharp in
the sense that when the coefficients P;(t) and Q(t) are constants (: = 1,2,...,m), f;(y) = y
and each delay o;(t) is a constant (7 = 1,2,...,n) they are also necessary. Then, we give
the linearized oscillation criteria of (1), that is, we establish the oscillation criteria for (1)
based on the oscillation of “limit” equation (4).

As usual, a solution of (1) is called oscillatory if it has arbitrarily large zeros and
nonoscillatory if it is eventually positive or eventually negative.

In what follows, we shall always assume that f;(j = 1,...,n) in (1) guarantee the
existence of solutions of (1) on [t,, 00). For convenience, we use the convention that all
the inequalities involving ¢ hold eventually.

2. Basic Lemmas

Lemma 1 In (1), assume that

(Hy) Either Y_i; Pi(t) < 1 holds eventually, or each of Pi(t)(i = 1,2,...,m) is
bounded and there exists a 7 > 0, natural numbers k;(i = 1,2,...,m) and a t* > ty such
that

T; = k;’T(iZ 1,2,...,m), ZP,(t'-}-kT)S 1,k=0,1,2,...;

i=1
(Hz) there is a ¢ > 0 such that Q(t) > ¢
If y(t) is an eventually bounded positive solution of (1) and

m

z(t) = ZP y(t~ 1), (5)

then we have
Z"(¢) > 0,2'(t) < 0,2(t) > 0; (6)
tlim 2'(t) = Jim z(t) = 0. (7)

Proof Without loss of generality, suppose that 1, < 75 < ... < 7,,,. It follows from (1)
that z"(t) > 0 on [t;,00) for some sufficiently large ¢; > t,. From (H;) and (5) we see
that |2(t)| is bounded. Hence

Jim Z(t) = tlim z(t)/t =0 and Z'(t) <0,
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which implies that z(t) is eventually decreasing. Therefore lim;_, . z(t) = B exists and is
finite. Now we claim that g = 0.

Following the procedure of the proof of [7, Lemma 1], we can prove that 3 > 0. Now
we claim that liminf,_, . y(t) = 0. Otherwise, if liminf,_,~ y(¢) = b > 0, then there exist
aty > t; and a b, > 0 such that y(t — o;(t)) € [b1/2,by) for t > to,5 = 1,2,...,n. As
fi € C(R,R) and f;(y) > O(y > 0), f;(y) attains a minimum h; > 0 on [b,/2,bs], that is,

Fily(t —a;(t))) > h< min hj,t > ty,5 = 1,2,.
1<j<n

From (1) it follows that z”(t) > qgh > 0,¢ > t,, which implies that z'(t) — oo and z(t) —» o
as t — oo. This contradicts the boundedness of z(t) and so the claim holds.

Also from (5) it follows that z(t) < y(t), and liminf,— « z(¢) < liminf,_, . y(t) = 0.

Thus we have lim,_,.. z(t) = 0, and so z(t) > 0.

The proof of Lemuna 1 is completed. O

From Lemma | and Lemma 1 of [8], we have the following lemma.

Lemma 2 In (1), suppose that (H,) holds and
th_}yl\lei(t):p,-(z:1,2,...,m),Zp,-< 1. (8)

If y(t) is an eventually bounded positive solution of (1), then the results of Lemmal 1 hold
and lim,_, . y(t) = 0.

Remark 1 The condition (H;) in Lemma 1 allows 31, Pi(t) — 1 to be oscillatory. When
=1, it becomes the condition (i} of Theorem 3.1 in [6].

Remark 2 In Lemmas 1 and 2, if y(t) is an eventually bounded negative solution of (1),
then the relevant results hold.

3. Main results

Theorem 1 In (1), assume that (H;) holds and

(Hs3) there exist positive constants K, and K, such that K; < Q(t) < Ko;

(Hs) there exist positive constants M; and N; such that Njy2 <yfily) < ijz,y €
Rj=12,...,n

(Hy) oj(t - 1) =o0;(t),i = 1,2,...,m,j = 1,2,...,n, and there exists a ¢ > 0 such
that miny<j<,, o>, {0;(t)} > o;

(Hg) there exists a T > t, such that

t>T A)() ,\° H N {exP[’\Z QJUJ(t)]+
J=1
H M Tt i[Q t — T exp(x\‘r,-) H[P,(t — Uj(i))]("} > 1,

=1

then all bounded solutions of (1) are oscillatory.
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Proof If there exists a bounded nonoscillatory solution y(t), we suppose that y(t) is
eventually positive (if y(t) is eventually negative, it can be treated in a similar way).
From (5) and Lemma 1, we see that (6) and (7) hold. From (5) it follows that z(t) < y(t).
Also from (1), (6) and (H3)-(Hs), we have

n n

2"(t) > Ko(J] V) [T 1wt - o501 (9)

./1 Jl

> KI(H N;Y) H[z(t — ()
> Ki([] N59)z(t - o) (10)

> Ky ([ M59)=(2)

J=1

for t > t; (> T, sufficiently large).

Define A = {A > 0: z"(t) > A%z(t) eventually}, then /K, [[}_, N;'j € A ie, Ais
nonempty. Next we show that A is bounded above. In fact, from (10) and in a similar
way to [5] we can prove that

2(t) > 8*z(t —a), t >t + 20, (11)
where § = 02K, ( = N;”) /8. On the other hand, let

= Tiste - o3I

From (6), (7) and (9) it is not difficult to see that liminf,_,, $(t) = 0. Then there exists
a sequence { s;}72, such that

(1) sk >t1+20,k=1,2,..., and s, — ook — 0);

(i1) ®(sk) = min{®(s):t; <s < s hk=1,2,...
Integrating (9) from u(< s;) to sy, and then integrating on u from s, — o to s we have

z(sr — ) > Ky H N / / v)dvdu
j=1 sp—c Ju

Zdel(HN ’ § 8

Jj=1
that is,
B(s)) < Bz(s), — o) k=1,2,..., (12)

where § = 2 ( - NJ-_Q’) /oKy From (1), (11), (12) and (Hj), it follows that

(s1) < Ka( [T M) [T 1w(os - os(a))}

i=1 i=1
< Ko(J] M;9)B2(si — o) < K2B([] M;¥)67%2(s1), k = 1,2,.
i=1 i=1

— 478 —

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



which implies that A is bounded above. Set Ag = sup A, clearly Ao > 0 and
2"(t) > Alz(¢). (13)

This implies that [2/(t)+ Aoz(t)]e *¢¢ is eventually nondecreasing, and then 2'(t)+Xoz(t) <
0 from (7). Let w(t) = z(t)e*et, then w'(t) < 0. From (1) and (13) it follows that

$(t) > A2(Q(t) H M) (1) (14)
From (1), (5), (14), (H5) and the Holder inequality we have
Z'(t) > Q H N3 H (t — o(t

- o) (II NSY) ﬂfzu —os(0) + 32 Rt = oi0)y(t = 5(0) = )

m n

O % ULt - s + 3 (e~ 7) ) Rt = o))

> Q(t)(j_li w ){glz(t — o)+

g:lx\?,(Q(t—r,-)jﬁlMJ‘.” t—r,)H (t — a;(t))]*}

- o(txj’ljl N ’{E[w(‘ — oj(t) exp(=o(t — ()] +

Aa(I:I M;“’)i‘[@(t )] (e - i) exp(=Aoft - 7)) H (Pt - ()1}

H ) {exp[Xo Z a;o(t)]+
j=1 j=1

7 n

H Z (t — )]t exp(XoTi) H (t — o;(t)))™ }z(t),

: 1=1 ':

which implies that

inf Q(t)(H N(" ){exp| /\UZaJaJ )+

t>t,
i=1

n n

/\() H MY i[Q t— 1) exp /\O-r, H i(t — a'J ]"‘1} < ,\2_

Since t; > T and Ay > 0, the above inequality contradicts (Hg).
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The proof of Theorem 1 is completed. O
Theorem 2 In (1), assume that (8), (Hj), (Hs) and (Hg) hold, and

iminf fi(y)/y > Nj >0, limsup fj(y)/y < M; < 00,j =1,2,...,n.
y— y—0
Then all bounded solutions of (1) are oscillatory.
Note that if there exists a bounded nonoscillatory solution y(t) of (1), then by Lemma
2 we know that lim,_,~ y(t) = 0. Hence the essential parts of (H4) hold and the proof of
Theorem 2 is similar to that of Theorem 1.

Corollary 1 In (4), suppose that p; > 0,9 > 0,0; > 0, 7; and a; are assumed as in (1),
1= 1,2,...,m,5 = 1,2,...,n, and Y%, p; < 1. Then all bounded solutions of (4) are
oscillatory if and only if

m n

F(A)y = -2 4 A2 Zp,— exp(Ar;) + gexp(A z a;jo;) > 0,1 >0.

i=1 i=1
Proof The sufficiency part can be proved from Theorem 1 with M; = N; = 1(j =
1,2,...,n) immediately. For the necessity part, if there is a A\; > 0 such that F(\) <0.
Since F(0) = ¢ > 0, there exists a Ay € (0, ;] such that F(Ay) = 0. It is easy to check
that y(t) = exp(—Ayt) is a bounded nonoscillatory solution of (4).

The proof is completed. O

Remark 3 Corollary 1 implies that the conditions of Theorems 1 and 2 are sharp.

In the following, we establish the linearized oscillation criteria for (1). First we give a
lemma which will be needed in the proof of Theorem 3. Its proof is similar to that of [5,
Lemma 4] and is omitted here.

Lemma 3 In (4), assume that p; > 0,q > 0,0; > 0, 7; and a; are assumed as in
(1),i=1,2,...,m,j = 1,2,...,n, and Y1, p; < 1. If all bounded solutions of (4) are
oscillatory, then there is a £y > 0 such that all bounded solutions of the equation

2 m "
Sl) — Yo~ eyt~ ) = (g - ) [ lste - o)

i=1 j:1
are oscillatory for every € € [0,¢,).
Theorem 3 In (1), suppose that (2), (3) and (H4) hold. Also suppose that Y2, p; <

l,¢ > 0,05(t) > o; > 0(j = 1,2,...,n). If all bounded solutions of (4) are oscillatory,
then all bounded solutions of (1) are also oscillatory.

Proof We consider two cases.
(i) pi=0,i=1,2,...,m. It follows from Corollary 1 that all bounded solutions of
(4) are oscillatory if and only if

—AT qexp(/\ZaJ-crj) > 0,A > 0.
=1
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From (3) we see that M; = N; = 1(j = 1,2,...,n). Then for every X > 0, we have

lltn_l'l{lf HN"’ {exp| \ZQJ j
HM ) Z (t — ) Yexp(AT;) H (t —o;()]™}
1=1 J=1
1 n
> om0 ) > 1,
=1

which implies that the conditions of Theorem 2 are satisfied. Hence, all bounded solutions
of (1) are oscillatory.

(i) 0<¥Yitypi<l. SetI={i:p; >0,i=1,2,...,m}, then I is nonempty. From
Lemma 3, if all bounded solutions of (4) are osc111atory, then there is an £y > 0 such that
all bounded solutions of the equation

113

y(t S (pi — eyt — ) = (g —€) [T lw(t — o))

el J=1
are oscillatory for every ¢ € [0,¢q]. It follows from Corollary 1 that
1 113
Y (pi — €)exp(Ar) + ﬁ(q ~¢)exp(A ) ajo;) > 1,2 >0
1 J=1

for every € € [0,¢4]. From (2) it follows that

tht—‘r,)HP(t o)) =pi >0,i€1, cli.I.E.Q(t):q>0'

t— 20

So for every € € (0, €q], there is a sufficient large T > t;, such that

__—_Q(?(_t)ri) jl;Il[Pi(t o)V >pi—ei€l, Q(t)>q-¢, t>T.

From (3) we have M; = N; = 1(j = 1,2,...,n). Then

(H uj){)\zQ(t exp /\Za o;(t)]+

t>‘I‘ A>0
II MY oo e TR - os)1™)
J=1
1 n
> t>1Tn£>“{Z pi — €)exp(ATi) + Az(q - e)exp(/\fg ajo;)} > 1

which implies that the conditions of Theorem 2 are satisfied. Hence, all bounded solutions
of (1) are oscillatory.
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The proof of Theorem 3 is completed. O
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