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Some Planar Graphs with Star Chromatic Number
Between Three and Four *
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Abstract: We construct sone infinite families of planar graphs with star chromatic
number 3+1/d, 3+2/(2d — 1), 3+3/(3d ~ 1), and 3+ 3/(3d — 2), where d > 2, partially
answering a question of Vince.
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1. Introduction

Let G be a graph with vertex set V(G) and edge set E(G). The graph is simple if
there is neither a parallel edge nor a loop. In this paper, we only consider simple graphs.
A k-coloring of G is a mapping of assigning the k colors to the vertices such that adjacent
vertices receive distinct colors. G is said to be k-chromatic if k is the least integer for
which G has a k-coloring and x(G) = k is called the chromatic number of G. The star
chromatic number [1] of a graph G is denoted by x.(G) which is a natural generalization of
the notion of the chromatic number. In such a coloring, one is permitted to use more than
X(G) colors but the colors assigned to the adjacent vertices should be as far as possible in
some sense.

Let z be an integer, k > 1 be a positive integer, and Z; = {0,1,2,...,k—1}. Let ||, be
the distance from z to the nearest multiple of k, d be a positive integer such that 2d < k
and be coprime with k. A (k,d)-coloring of a graph G is a function ¢ : V(G) — 2Z; such
that for any edge uv of E(G), |¢(u) — ¢(v)|x > d. Vince has defined the star chromatic
number of G as: x.(G) = inf {k/d: G has a (k,d)-coloring}.

In [1], Vince raised some open questions. Here are two of them:

(1) What are some infinite family of planar graphs with star chromatic numbers
between two and three besides odd cycles?

(2) What are some infinite family of planar graphs with star chromatic numbers
between three and four?
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This paper is motivated by question (2). We know little about the existence of planar
graphs with star chromatic number between three and four. Till now, we only know
the exact value of star chromatic numbers of a few infinite families of planar graphs
being between three and four such as triangular prisms, reels and Hajos-sum wheels etc.,
for details, see[2-8]. Here we provide a few infinite families of planar graphs with star
chromatic number between three and four. Obviously, this answers one question of Vince
In part.

2. Planar graphs with star chromatic number 3 + 1/d

Let P! = (uiuj...,u}) be an n — 1-path. Let T: be the graph obtained from P. by
joining u; to uj~+2, where j = 1,2,..,n—2,(n > 3). If i = 0, the upper-scripts are omitted.
Add an isolated vertex u to P,, let G| be the graph obtained from P, by joining u to u,
and u,, to ug;,s, where 7 is one elements of the set {0,1,...,|n/3|}. The valence of u is
three in G. It is easily seen that x(G) = x.(G) = 3if |[V(G)| = 3k or 3k + 2, x(G) =4 if
|V(G)| = 3k + 1, where k is a positive integer.

Theorem 2.1 Let d be a positive integer. x.(G) is 3 + 1/d if the order of G is 3d + 1.

Proof We give a (3d + 1, d)-coloring ¢ of G as follows. ¢(u) = 0, ¢(u;) = id (mod 3d + 1)
where ¢ = 1,2,...,3d + 1. It is easy to check that it is a legal (3d + 1, d)-coloring. Next,
there is no coprime integer pairs k' and d' such that 3/1 < k¥'/d' < 3 +1/d, ¥’ < 3d + 1,
0<k' -3d <d/d<1.

3. Planar graphs with star chromatic number 3 + 2/(2d — 1)

Let ¢ be a (k,d)-coloring of G. We define a directed graph D.(G) from G by orienting
an edge zy from z to y if ¢(y) = ¢(z) + d (mod k).

Lemma 3.14 Let G be a connected graph. x(G) = k/d if and only if G is (k, d)-colorable,
and for any (k,d)-coloring ¢, D.(G) contains at least one directed cycle.

Lemma 3.2 Let G be a connected graph with a (k,d)-coloring. If there is a color i not

appearing in the (k,d)-coloring ¢, then there is another coprime integer pairs k', d’ such
that k'/d' < k/d and G is also (k',d’)-colorable.

Proof Since ged(k,d) = 1, there is a integer j such that jd = ¢ (mod k), where 0 < j <
k — 1. Therefore, for any (k, d)-coloring of G, D.(G) will never contain any directed cycle.
By Lemma 3.1, x.(G) = k'/d’' < k/d.

Theorem 3.3 G is colored uniquely for any (3d + 1, d)-coloring up to permutations.

Proof For any (3d + 1, d)-coloring ¢, D.(G) contains a directed hamilton cycle.

We construct a graph G as follows. Take a copy of Tj;, (d > 2) and two isolated
vertices z and y. If d is even, join z to u}, u}, u},, and y to uj, u},_,, uy,;. Take another
copy of T2, ., join z to u?, u2, and y to u2,_,, if dis odd, join z to ul, ul, ul;, and y to
u}, uy; |, ul,. Take another copy of T, ,, join z to u?, ul, and y to ul,_,. G, is planar,
its order is 64 — 1.
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Theorem 3.4 x.(G) is 3+ 2/(2d - 1).

Proof We prove that G is not (3d + 1,d)-colorable. By symmetry, ¢ and T, induce
G, as a subgraph of G;. For any (3d + 1,d)-coloring of G;. Without loss of generality,
assume ¢(z) = 0. y and Ta, induce G;. By the colors of Ty, we get the color of y is
also 0, identify z and y, the new vertex z and T, , induce also a graph G but its order
is 14+ 3(d — 1). By Theorem 3.2, its star chromatic number is 3 + 1/d — 1 greater than
3+ 1/d. It is unlikely that z, y and T7, , have a legal (3d + 1, d)-coloring.

Further, we show that G, is (6d — 1,2d — 1)-colorable. Define such a (6d — 1,2d — 1)-
coloring as follows: ¢(z) = 0, c(u}) = i(2d — 1) (mod 6d — 1), i = 1,2,..3d, c(y) =
(3d+1)(2d-1), c(ud4_,)) = (3d+2)(2d - 1) (mod 6d — 1), c(u}) = (3(d - 1)+ 1-i)(2d -
1) + (3d +1)(2d — 1) (mod 6d — 1). It is easy to check that it is legal.

Finally, we prove that there are no coprime integers k' and d’ such that 3 + 1/d <
k'/d < 3+2/(2d~-1) and k' < 6d — 1. Then we have d'/d < k' — 3d' < 2d'/(2d - 1),
byd<d <2d-1then1<d/d<k'-3d < 2d'/(2d - 1) < 2, a contradiction. Then
x:(G2) = 3+ 2/(2d - 1).

4. Planar graphs with star chromatic number 3 + 3/(3d — 1)

We construct G3 as follows: take three copies of T34, denoted by Tsd’ ng, T:?d' Ifdis
even, join vertex u? to u}, u} and ul,, u} to uf, u and uZ,. Join uj, to u3; , and ul,.
2 3 3 . g 1 1 : s 2 1,1
u:l,d tosu:,d_lzan% U4, ar;d join u:,d1 to u},d; Usy_q amd2 uy. 2If dis gdd, join u; to ujy, uzaand
u?d, u} to uf, uj 1a.nd u3,. Join ug, to u3, , and u3,, uj, to u3, , and uz,. Join uj, to
Usy, Usg_y, and ug.

Lemma 4.1 G3 is not (3d + 1, d)-colorable.

Proof By contradiction, suppose Gj is (3d + 1,d)-colorable. u} and Tj,, u} and T2, u},
and TZ,, u2, and T3, induce a graph G;. For any (3d + 1,d)-coloring of G, the colors of
u] and T34 will induce a (3d + 1, d)-coloring of G, without loss of generality, we assume
that c(u?) = 0, since x.(G1) = 3 + 1/d, and any (3d + 1, d)-coloring of G is unique if the
colors of one more vertex of G; is known. There are only two cases to consider.

Case 1 c(u}) = d, then ¢(u};) = 3d?( mod 3d+ 1) = —d = 2d + 1, u}, and T3, induce also
a graph of G, the colors of u? and u}, are known, the colors of T, can be determined.
c(ud;) = (3d - 1)d (mod 3d + 1) = d + 1. By the same reason, c(u}) = 2d + 1, and
c(udy) = 1. but |e(u3;) - c(ul)| = d - 1.

Case 2 If c(ul,) = d, then c(u}) = 2d + 1, c(ul,) = 2d, c(u}) = d and c(u3;) = 3d, and
also we have c(u3;) — c(u}) =3d - (2d-1) = 1.
Then G3 is not (3d + 1, d)-colorable.

Lemma 4.2 Gj is not (9d,3d — 1)-colorable.

Proof We define such a (94, 3d — 1)-coloring as follows. c(u}
(mod 9d), i = 1,2,...,3d. ¢(ul) =0, c(u.,) = (3d - 1), c(u
(u?)=3d+1+4+i(3d-1),i=1,2,...,3d. ¢(u?) = 6d, c(u}) =

) =0, c(y;) = (i-1)(3d-1)
1io) = 2. c(uly) = 3d+1,
d -1, c(ul;_,) = 6d+2,
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e(udy) = 1. c(u?) = 3d + i(3d — 1) (mod 9d), then c(ud;) = 6d + 1. Then x.(G3) <
3+3/(3d-1).

Theorem 4.3 x.(G3) is 3+ 3/(3d - 1).

Proof By Lemmas 3.1 and 3.2, we know that 3 + 1/d < x. < 3+ 3/(3d — 1). It suffices
to prove that there are not coprime integers k' and d’ such that 3 + 1/d < k'/d' <
3+ 3/(3d—1) and k' < 9d. By the above inequalities, d'/d < k' — 3d' < 3d'/(3d — 1)
and d < d < 3d-1,thenl1 < d'/d < k' - 3d < 3d'/(3d — 1) < 3. The possible case is
k' = 3d' +2. If it were, then 1/d < 2/d' < 3/(3d — 1), and 2d — 2/3 < d’ < 2d, it is clearly
false. Then, x.(G3) =3+ 3/(3d - 1).

5. Planar graphs with star chromatic number 3 + 3/(3d — 2)

We construct an infinite family of planar graphs G4 from G as follows: take two copies
1 2 3 .
of T34, denoted by Ty, Ty, and one copy of T3(4-1), denoted by Ts(d—l)’ and one isolated
; s 1 1,3 3 2 1 3
vertex u. If d is even, join u to uj, ul, ., a.nod U3y Usy 3, Ung_g» UF to ul, ul, ud,, and u3,
ul, to ul; and u2, |, and identify «} and u;,(!’; If d is :)dd, join u to ul, ul,, ud, , ud,_s,
and uj;_,, uf to uj, u}, ul, and u?, ul, to v, and v, ,, and identify v} and ul,.

Lemma 5.1 G4 is not (6d — 1,2d — 1)-colorable.

Proof On the contrary, if it were, for any (6d — 1,2d — 1) -coloring of G4, u,u?, T3,
and T3, , induce a graph G of star chromatic number 3 + 2/(2d — 1), the color of u, uZ,
T;; and T3, , will induce a (6d — 1,2d — 1)-coloring of G,. It is unique to color G5 with
any 6d — 1,2d — 1)-coloring up to permutation. If two colors of the adjacent vertices are
known, the colors of all other vertices of G5 can be determined. Without loss of generality,
c(u}) =0, c(u}) = i(2d — 1) (mod 6d — 1), i = 1,2,..3d, c(ul;) = 4d — 1, c(ul) = 2d - 1,
c(uy) = 4d — 2, c(u?) = 6d — 2, c(u?) =4d — 1 +4(2d — 1) mod (6d - 1) i = 1,2,..,3d,
c(u;) = 2d — 1. By the colors of ul, and u; the color of u2, ; is determined uniquely.
It is 6d — 2, identify u? and u2; ,, u?, u?, .., u2; , induce a graph of star chromatic
number not less than 3 + 1/(d — 1). Since the induced graph contains G; as its subgraph,
x-(G1) = 3+2/(2d — 1). G, cannot have a (6d — 1, 2d — 1)-coloring, a contradiction. Thus
G, is not (6d — 1,2d — 1)-colorable.

Lemma 5.2 G is (9d — 3,3d — 2)-colorable.

Proof Define such a 9d — 3, 3d — 2)-coloring c as follows: ¢(u) = 0, ¢(u}) = #(3d — 2) (mod
9d — 3),i=1,2,...,3d. We can check that it is a legal (k, d)-coloring.

Theorem 5.3 x.(G4) =3+ 3/(3d - 2).

Proof By Lemmas 5.1 and 5.2, 3+ 2/(2d — 1) < x. < 3 + 3/(3d — 2). There is no k'
and d’ such that k' < 9d - 3, since 2 < 3d'/(2d - 1) < k' - 3d' < 3d'/(3d - 2) < 3, and so
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