Weakly Compact Sets and Orlicz Spaces *

SHI Zhong-rui

(Dept. of Math., Shanghai University, Shanghai 200436, China)

Abstract: In this paper, We give the simple criteria of weakly compact sets in L_1 and l_1 , which perfects Anto's result ^[1]. Also as a corollary, we get Shur's theorem. In view of weak compactness, we give another proof of the reflexivity of Orlicz spaces.

Key words: Compact sets; weak topology; Orlicz space.

Classification: AMS(1991) 46E30,46B20/CLC O177.2

Document code: A **Article ID:** 1000-341X(2001)04-0537-06

Let X be a Banach space and X^* its dual space, B(X) be the unit ball of a Banach space X. A set D in Banach space X is said to be (weakly) compact provided that every sequence in D has a (weakly) convergent subsequence [7]. A set D in Banach space X is said to be relatively (weakly) compact provided that the (weak)closure of D is (weakly)compact. In 1960 [1], Anto gave the powerful criterion of weakly compact sets for Orlicz spaces, but it fails for L_1 and l_1 . In this paper we give them for L_1 and l_1 , so that Shur's theorem follows directly as a corollary.

Let us recall that $L_1(G, \sum, \mu) = \{x(t) : \int_G |x(t)| d\mu < \infty\}$ where (G, \sum, μ) is a measurable space with $\mu G < \infty$ and $l_1 = \{x = x(i) : \sum_{i=1}^{\infty} |x(i)| < \infty\}$.

Theorem 1 For a set A in $L_1(G, \sum, \mu)$ with $\mu G < \infty$, A is relatively weakly compact if and only if A is absolutely equi-integrable, i.e., for all $\varepsilon > 0$, there exists $\delta > 0$ such that for all $E \subseteq G$ with $\mu E < \delta$, we have that for all $x \in A$, $\int_E |x(t)| d\mu < \varepsilon$.

Proof Without loss of generality, we assume that G = [0,1] and μ is a Lebesgue measure. Suppose that A is not absolutely equi-integrable, i.e., there exists $\varepsilon_0 > 0$ such that for each integer n we have $x_n \in A$ and $E_n \subset G$ with $\mu E_n \leq \frac{1}{n}$ and $\int_{E_n} |x_n(t)| dt \geq \varepsilon_0$, Obviously, all subsequence of $\{x_n\}$ are not absolutely equi-integrable. Since A is relatively weak compact, by Eberlein-Smulian Theorem, there exists a weakly convergent subsequence of $\{x_n\}$ that converges weakly to some $x \in L_1$. Without loss of generality, we assume that $\{x_n\}$ converges weakly to x. By Legesgue's Theorem (P172 of [5]), it

Foundation item: Research Supported in part by the NNSF of China

^{*}Received date: 1998-09-21

follows that $\{x_n - x\}$ is absolutely equi-integrable, so does $\{x_n\}$ (since x is absolutely equi-integrable), a contradiction.

Conversely, for any $A \subset L_1[0,1]$ for which A is absolutely equi-integrable. Since $L_1[0,1] \subset (C[0,1])^*$ and C[0,1] is separable, by Theorem 1.1.4 of [11] and Banach-Alaoglu-Bourbaki Theorem, $(U(X^*), \sigma(X^*, X))$ is metrizated and compact. At first, we see that A is bounded. In fact, take $\delta > 0$, and split [0,1] into parts $E_1, ..., E_n$ such that $\mu(E_i) \leq \delta$ then for all $x \in A$

$$||x||_1 = \int_0^1 |x(t)| dt = \sum_{i=1}^n \int_{E_i} |x(t)| dt \le n.$$

For any $\{x_n\}\subset A$. Since A is sequential $\sigma(X^*,X)$ compact, there exists a convergent subsequence, still written as $\{x_n\}$, such that $w-\lim_{n\to\infty}x_n=x$ for some $x\in L_1([0,1])$ in the topology $\sigma(X^*,X)$ where $X^*=L_1([0,1]), X=C[0,1]$. In the following, we shall show that $\{x_n\}$ converges weakly in the topology $\sigma(L_1,L_\infty)$. In fact for any $f\in L_1^*=L_\infty$, for any $\varepsilon>0$, and $\delta>0$, by Lusin's theorem, there exists $g\in C[0,1]$ such that $\|g\|_\infty=\|f\|_\infty$, $\mu\{f\neq g\}\leq \delta$ and $\int_{f\neq g}|f-g|\mathrm{d}t<\varepsilon$. Since $\lim_{n\to\infty}\langle g,x_n-x\rangle=0$, there exists n_0 , for $m,n\geq n_0,\ \langle g,x_n-x\rangle\leq \varepsilon$. Since A is absolutely equi-integrable, there exists $\delta>0$ such that for all subsets E with $\mu E<\delta$ and all $z\in A$, $\int_E|z(t)|\mathrm{d}t<\varepsilon$. So

$$\begin{aligned} |\langle f, x_n - x \rangle| &\leq |\langle g, x_n - x \rangle| + |\langle f - g, x_n - x \rangle| \\ &< \varepsilon + 2 \|f\|_{\infty} \left(\int_{f \neq g} |x_n(t)| \mathrm{d}t + \int_{f \neq g} |x(t)| \mathrm{d}t \right) \leq \varepsilon + 2 \|f\|_{\infty} 2\varepsilon = (1 + 4 \|f\|_{\infty}) \varepsilon. \end{aligned}$$

By the arbitrariness of f, we see that $w - \lim x_n = x$. \Box

Next, we discuss the relatively weakly compact sets in Orlicz spaces. Let \Re be the set of all real numbers. A function $M: \Re \to \Re_+$ is called an Orlicz function if M is convex, and $\lim_{u\to 0} \frac{M(u)}{u} = 0 \lim_{u\to \infty} \frac{M(u)}{u} = \infty$. A complemented function N of M is defined in the sense of Young's by $N(v) = \sup_{u\in \Re} \{uv - M(u)\}$. It is known that if M is an Orlicz function and its complemented function N is also an Orlicz function. M is said to satisfy $\triangle_2(\delta_2)$ -condition for large (small) u (simply write $M \in \triangle_2(\delta_2)$) if for some K and $u_0 > 0$, $M(2u) \le KM(u)$ as $|u| \ge u_0(|u| \le u_0)$. Let (G, \sum, μ) be a measurable space with $\mu G < \infty$. For a measurable function x(t) we call $\rho_M(x) = \int_G M(x(t)) d\mu$ the modular of x. For a scalar sequence $x = \{x(i)\}$ we call $\rho_M(x) = \sum_{i=1}^\infty M(x_i)$ the modular of x. The Orlicz space L_M generated by M is a Banach space

$$L_{M} = \{x : \exists \lambda > 0, \rho_{M}(\lambda x) < \infty\}$$

equipped with Orlicz norm

$$||x||^0 = \inf_{k>0} \frac{1}{k} \{1 + \rho_M(kx)\} = \frac{1}{k} \{1 + \rho_M(kx)\}, \forall k \in [k^*, K^{**}].$$

where $k^* = \inf\{k : \rho_N(P(kx)) \ge 1\}, k^{**} = \sup\{k : \rho_N(P(kx)) \le 1\}$, or equipped with Luxemburg norm

$$||x||=\inf\{\lambda>0: \rho_M(\frac{x}{\lambda})\leq 1\}.$$

(more detail can be seen in [KR,WC]).

Since the compactness is invariable topologically, we only discuss it for one norm.

Theorem 2 In Orlicz function space L_M , all bounded sets are relatively L_N -weakly sequential compact if and only if $N \in \triangle_2$.

Proof Sufficiency. For a bounded set A, without loss of generality, we can assume $A \subset B(L_M)$. For all $x \in A$, $\rho_M(x) \le 1$. Since $N \in \Delta_2$, i.e., there exist $u_0 > 0, 1 > \beta > 0$ and a < 1 such that for all $|u| \ge u_0$, $M(\beta u) \le a\beta M(u)$. Thus

$$\lim_{n\to\infty} \sup_{x\in A} \frac{\rho_M(\beta^n x)}{\beta^n} \leq \lim_{n\to\infty} \sup_{x\in A} \left[\frac{\rho_M(\beta^n u_0 \chi_x)}{\beta^n} + a^n \rho_M(x) \right]$$
$$\leq \lim_{n\to\infty} \left[\frac{M(\beta^n u_0) \mu G}{\beta^n} + a^n \right] \to 0.$$

By [1], we get that A is relatively L_N -weakly compact.

Necessity. Now we assume that the Orlicz space L_M is equipped with Orlicz norm. Suppose that $N \notin \Delta_2$, then there exist $v_n \nearrow \infty$ and disjoint subsets $G_n \subset G$ such that

$$N((1+\frac{1}{n})v_n) > 2^n N(v_n), \quad N(v_n)\mu G_n = \frac{1}{2^n}.$$

Let

$$v(t) = \left\{ egin{array}{ll} v_n & ext{if } t \in G_n, n = 1, 2, \cdots \ 0 & ext{otherwise,} \end{array}
ight.$$

Then $\rho_N(v) = \sum_{n=1}^{\infty} N(v_n) \mu G_n = 1 < \infty$. Let $v_n = v_n \chi|_{G_n}$. We see that $1 \ge \|v\|_{(N)} \ge \frac{1}{1+\frac{1}{n}}$. By [9], there exists $x_n \in L_M$ with $\|x_n\|^0 = 1$, $u_n = u_n \chi|_{G_n}$ and $\langle v_n, x_n \rangle = \|v_n\|_{(N)}$. Let $A = \{x_n\}$, then $A \subset B(L_M)$, but A is not L_N -weakly compact. In fact, take $\sigma_n = \mu G_n$ then $\sigma_n \to 0$. From

$$\lim_{n\to\infty}\sup_{m}\langle v|_{G_n},x_m\rangle\geq\lim_{n\to\infty}\langle v_n,x_n\rangle=\lim_{n\to\infty}\|v_n\|_{(N)}=\lim_{n\to\infty}\frac{1}{1+\frac{1}{n}}=1,$$

by [1], A is not relatively L_N -weakly sequential compact, a contradiction. \square

Lemma 1^[4,10] Orlicz function spaces L_M is weakly sequential complete if and only if $M \in \Delta_2$.

Corollary 1 In Orlicz function space L_M , all bounded sets are weakly compact if and only if $M \in \Delta_2$ and $N \in \Delta_2$ if and only if L_M is reflexive.

Theorem 3 For a set A in l_1 . A is relatively weakly compact if and only if A is bounded and A is uniformly summable, i.e., for all $\varepsilon > 0$, there exists an integer I such that for all $A \ni x = x(i), \sum_{i=I+1}^{\infty} |x(i)| < \varepsilon$.

Proof Necessity. If A is relatively weakly compact, by Hahn-Banach Uniformly Bounded Theorem, A is bounded. Without loss of generality, assume that $A \subset B(l_1)$. By the same argument as in the Theorem 1, we get a contradiction from the Lemma of [8] instead of Lebesgue Theorem of [5].

Sufficiency. When A is bounded and uniformly summable, we shall show that A is relatively compact. For any sequence $\{x_n\} \subset A$, by Diagonal Selection Principle, we have a subsequence, still written as $\{x_n\}$, such that for all $i,x_n(i) \to x(i)$. By Banach-Alaoglu Theorem, we get that $x \in l_1$. Since A is uniformly summable, it follows that for every $\varepsilon > 0$ there is an integer I such that for all $z \in A$, $\sum_{i=I+1}^{\infty} |z(i)| < \varepsilon$, so for all n, $\sum_{i=I+1}^{\infty} |x_n(i)| < \varepsilon$, we get $\sum_{i=I+1}^{\infty} |x(i)| \le \varepsilon$. From $x_n(i) \to x(i)$, there exists an integer n_0 such that for all $n \ge n_0$,

$$||x_n-x||_1 \leq \sum_{i=1}^{I} |x_n(i)-x(i)| + \sum_{i=I+1}^{\infty} |x_n(i)| + \sum_{i=I+1}^{\infty} |x(i)| \leq \varepsilon + \varepsilon + \varepsilon = 3\varepsilon,$$

i.e.,
$$||x_n - x||_1 \to 0 \quad (n \to \infty)$$
.

Remark In the proof of Theorem 3, we have shown that for $A \subset l_1$, A is relatively compact if and only if A is relatively weakly compact if and only if A is bounded and uniformly summable.

Corollary 2 (Shur's)^[6] In $\{x_n\} \subset l_1$, its weak convergence and norm convergence coincide

Theorem 4 In Orlicz sequence space l_M , all bounded sets are relatively l_N -weakly sequential compact if and only if $N \in \delta_2$.

Proof Sufficiency. For a bounded set A, as that of Theorem 2, we can assume that $A \subset B(l_M)$, so for all $x \in A$, $\rho_M(x) \le 1$. By $N \in \delta_2$, i.e., there exist $u_0 > 0, 1 > \beta > 0$ and a < 1 such that for all $|u| \le u_0$, $M(\beta u) \le a\beta M(u)$. Take an integer I with $IM(u_0) \ge 1$, thus

$$\lim_{n \to \infty} \sup_{x \in A} \frac{
ho_M(eta^n x)}{eta^n} \le \lim_{n \to \infty} \sup_{x \in A} [\frac{IM(eta^n u_0 \chi|_x)}{eta^n} + a^n
ho_M(x)]$$

$$\le \lim_{n \to \infty} [\frac{IM(eta^n u_0)}{eta^n} + a^n] \to 0.$$

By [8], we get that A is relatively l_N -weakly compact.

Necessity. Also as in the proof of Theorem 2, we assume that l_M is equipped with Orlicz norm. Suppose that $N \notin \delta_2$, then there exists $v_n \setminus 0$ such that

$$N((1+\frac{1}{n})v_n)>2^{n+1}N(v_n),\ \ N(v_n)<\frac{1}{2^n}.$$

Take integers I_n such that

$$I_n N(v_n) \leq \frac{1}{2^n}, \ (I_n+1)N(v_n) > \frac{1}{2^n}.$$

Let

$$v(i) = \left\{ egin{array}{ll} v_n & ext{if } I_1 + \cdots + I_{n-1} < i \leq I_1 + \cdots + I_n, \ n=1,2,\ldots \\ 0 & ext{otherwise.} \end{array}
ight.$$

Then $\rho_N(v) = \sum_{n=1}^{\infty} I_n N(v_n) \leq 1$. Let $v_n = v_n \sum_{i=I_1+\dots+I_{n-1}+1}^{I_1+\dots+I_n} e_i$, we see that $1 \geq \|v_n\|_{(N)} \geq \frac{1}{1+1}$. By [9], there exist $x_n \in L_M$ with $\|x_n\|^0 = 1$, $x_n = u_n \sum_{i=I_1+\dots+I_{n-1}+1}^{I_1+\dots+I_n} e_i$ and $\langle v_n, x_n \rangle = \|v_n\|_{(N)}$. Let $A = \{x_n\}$. Then $A \subset B(l_M)$, but A is not l_N -weakly compact. In fact, $\lim_{n\to\infty} \sup_m \langle v|_{i>I_{n-1}}, x_m \rangle \geq \lim_{n\to\infty} \langle v_n, x_n \rangle = \lim_{n\to\infty} \|v_n\|_{(N)} = \lim_{n\to\infty} \frac{1}{1+\frac{1}{n}} = 1$. By [8], A is not relatively l_N -weakly sequential compact, a contradiction Ω

Lemma 2^[2] In separable Orlicz spaces, $\rho_M(x) \to 0$ if and only if $||x|| \to 0$.

Lemma 3^[3] Let X be a Banach lattice. X is sequential weakly completed if and only if X is a KB space.

Obviously, for the real number relation " \leq ", l_M forms an ideal Banach lattice^[2].

Theorem 5 Orlicz sequence space l_M is a KB space if and only if $M \in \delta_2$.

Proof As in [3], we only need to show

- 1. $0 \le x_n \downarrow 0 \Rightarrow ||x_n|| \to 0$ if and only if $M \in \delta_2$.
- 2. $0 \le x_n \uparrow, \sup_n ||x_n|| < \infty \Rightarrow \exists x, ||x_n x|| \to 0$ if and only if $M \in \delta_2$.
- 1-1. If $0 \le x_n \downarrow 0 \Rightarrow ||x_n|| \to 0$ then $M \in \delta_2$. Otherwise, by Theorem 4, there exists $u_n \searrow 0$ such that

$$M((1+\frac{1}{n})u_n) > 2^{n+1}M(u_n), M(u_n) < \frac{1}{2^n}.$$

Take integers I_n with $I_nM(u_n) \leq \frac{1}{2^n}$, $(I+1)M(u_n) > \frac{1}{2^n}$. Define

$$x = \sum_{n=1}^{\infty} u_n \sum_{i=I_1 + \dots + I_{n-1} + 1}^{I_1 + \dots + I_n} e_i,$$

then $\rho_M(x) = \sum_{n=1}^{\infty} I_n M(u_n) \leq 1$. Define $x_n = \sum_{j=n}^{\infty} u_j \sum_{i=I_1 + \dots + I_n = i+1}^{I_1 + \dots + I_n} e_i$. then $0 \leq x = x_1 \geq x_2 \geq x_3 \geq \dots$ and for all $i, x_n(i) \to 0$ i.e., $x_n \downarrow 0$ but $||x_n|| \geq \frac{1}{\frac{1+1}{n}} \not\to 0$, a contradiction.

1-2. If $M \in \delta_2$ then $0 \le x_n \downarrow 0 \Rightarrow ||x_n|| \to 0$. For $\varepsilon > 0$, take integer I, $\sum_{i>I} M(x_1(i)) < \varepsilon$. Since $x_n \downarrow 0$, take n_0 such that for all $n \ge n_0$, $\sum_{i=1}^I M(x_n(i)) < \varepsilon$,

$$\sum_{i=1}^{\infty} M(x_n(i)) = \sum_{i=1}^{I} M(x_n(i)) + \sum_{i=I+1}^{\infty} M(x_n(i)) \leq \varepsilon + \sum_{i=I+1}^{\infty} M(x_1(i)) \leq 2\varepsilon.$$

By Lemma 2, $||x_n|| \to 0$.

- 2-1. If $0 \le x_n \uparrow, \sup_n ||x_n|| < \infty \Rightarrow \exists x, ||x_n x|| \to 0$ then $M \in \delta_2$. Otherwise there exist x and x_n as in the proof of 1-1. Define $y_n = x x_{n-1}$, thus $0 \le y_n \uparrow x$, $\sup_n ||x_n|| \le ||x|| \le 1$ but $||y_n x|| \ge ||x_n|| \ge \frac{1}{1+1} \not\to 0$, a contradiction.
- 2-2. If $M \in \delta_2$, then $0 \le x_n \uparrow$, $\sup_n ||x_n|| \stackrel{\sim}{<} \infty \Rightarrow \exists x, ||x_n x|| \to 0$. Without loss of generality, we assume that $||x_n|| \le 1$. For each i, let $x(i) = \sup_n x_n(i)$. then for all integers I, $\sum_{i=1}^{I} M(x(i)) \le \sup_n \sum_{i=1}^{I} M(x_n(i)) \le \sup_n \rho_M(x_n) \le 1$, so $\rho_M(x) = \sum_{i=1}^{\infty} M(x_n(i)) \le 1$

1. On the other hand, for any $\varepsilon > 0$ take an integer I such that $\sum_{i=1}^{I} M(x(i)) < \varepsilon$. By $x_n(i) \to x(i)$, there exists n_0 such that for all $n \ge n_0$, $\sum_{i=1}^{I} M(x_n(i) - x(i)) < \varepsilon$. Then

$$\sum_{i=1}^{\infty} M(x_n(i) - x(i)) = \sum_{i=1}^{I} M(x_n(i) - x(i)) + \sum_{i=I+1}^{\infty} M(x_n(i) - x(i))$$

$$\leq \varepsilon + \frac{K}{2} \sum_{i=I+1}^{\infty} [M(x_1(i)) + M(x_1(i))] \leq \varepsilon + \frac{K}{2} (\varepsilon + \varepsilon) \leq (2 + K)\varepsilon,$$

by Lemma 2, $||x_n|| \to 0, (n \to \infty)$. \square

Corollary 3 Orlicz sequence space l_M is sequential weakly completed iff $M \in \delta_2$.

Corollary 4 In Orlicz sequence spaces l_M , all bounded sets are relatively weakly compact if and only if $M \in \delta_2$ and $N \in \delta_2$ if and only if l_M is reflexive.

References:

- [1] ANDO T. Weakly compact sets in Orlicz spaces [J]. Canad. J. Math., 1960, 14: 170-196.
- [2] CHEN Shu-tao, Geometry of Orlicz Spaces [M]. Dissertation, Poland, 1996.
- [3] KANTOLOVIKII B, AKIELOV G. Functional Analysis [M]. Advanced Education Print House, 1982. (Chinese Version)
- [4] KRASNOSIELSKII M A, RUTICKII Y B, Convex Functions and Orlicz Spaces [M]. Noordhoff Groningen, 1961.
- [5] NATANSON I. Real Analysis [M]. Advanced Education Press, 1960. (Chinese Version)
- [6] SCHUR I. über eine klasse von Mittebildangen mit Anwendwrigen auf. die determinantentheerie [J]. Sitzungsber, d. Berl. Math. Gesellsch, 1923, 22: 9 20.
- [7] WHITELY R.J. An elementary proof of the Eberlein-Smulian theorem [J]. Math. Ann., 1967, 172: 116-118.
- [8] WANG Ting-fu, WU Yan-ping. A-Summality of Orlicz sequence spaces [J]. J. Heilongjiang Univ., 1987, 2: 16–21. (in Chinese)
- [9] WU Cong-xin, WANG Ting-fu, CHEN Shu-tao. et al. Geometric Theory of Orlicz Spaces[M]. H.I.T. Print House, Harbin, 1986. (in Chinese)
- [10] WANG Yu-wen. Sequential completeness of Orlicz spaces [J]. Northeastern Math. J., 1985,
 1: 241-246. (in Chinese)
- [11] YU Xin-tai. Geometry of Banach Spaces [M]. Publishing House of Eastern China Normal University Press, 1986. (in Chinese)

弱紧集与 Orlicz 空间

石忠锐

(上海大学数学系, 上海 200436)

摘 要: 本文圆满完善了 [1] 的结果, 并由此给出了 Orlicz 空间自反性与 Shur 定理的新证明。