The Argument Distribution of Infinite Order Meromorphic Functions *

JIANG Shu-zhen

(Changchun Teacher's College, Jilin 130032, China)

Abstract: We study the argument distribution of infinite order meromorphic functions and obtain distribution theorem which combines the infinite order meromorphic functions with its derived function.

Key words: meromorphic function; infinite order.

Classification: AMS(1991) 30C45/CLC ()174.51

Document code: A Article ID: 1000-341X(2001)04-0543-04

We use $n(D, f = \alpha)$, $n(r, f = \alpha)$ and $n(r, \theta, \varepsilon, f = \alpha)$ to denote respectively the number of zero point of the function $f(z) - \alpha$ on the region $D, \{z||z| < r\}$ and $\{z||z| \le r$ and $|\arg z - \theta| \le \varepsilon\}$, where repeated zero point will be counted according to repeated numbers.

Definition Let f(z) be a non-constant meromorphic function on the region D and m > 4. Circle C in D is called full circle of the function f(z) with index number m, if $n(c, f = \alpha) \ge m$ for any number α , at most except some α , may be limited within two spherical circular of the radius being e^{-m} .

Lemma 1^[1] If f(z) is an infinite order meromorphic function, then there exists a positive number $r_1(r_1 > 1)$ which depends only on the function f(z) and the type function u(r). If $r \in s_1, r > r_1, q > 1$ and

$$m = \frac{T(r,f)}{6\beta q^2 \log r(\frac{4}{5}\log r + 1)} > 4,$$

then there exists a point z_0 in circular ring $r^{1/5} < |z| < r$, and circle $|z - z_0| < \frac{1}{q}|z_0|$ is a full circle of the function f(z) with index number m, where β is a positive number.

$$S_1 = \{r|r \geq r_0, T(r,f) > [u(r)]^{\frac{6}{7}}\}.$$

^{*}Received date: 1998-08-04

Biography: JIANG Shu-zhen (1955-), female, born in Tongyu county, Jilin province, M.Sc., currently an associate professor at Changchun Teacher's College.

Lemma 2^[2] Let f(z) be a meromorphic function in |z| < 1. If $n(1, f = 0) + n(1, f = \infty) + n(1, f^{(k)} = 1) < N$, then for any complex number a we have $n(\frac{1}{32}, f = a) < C_k\{N + \log \frac{1}{|f(z^*),a|} + \log^+ \log^+ |f(z^*)|\}$, where $|f(z^*),a|$ is spherical distance of the point $f(z^*)$ from $a, z^* \in \{z | |z| < \frac{1}{32}\}$, C_k is a constant depending on K and

$$\prod_{q=1}^{n(1,f=\infty)}|z^*-\beta_q|>\big(\frac{1}{400e}\big)^{n(1,f=\infty)},$$

where $\beta_q(q=1,2,\cdots,n(1,f=\infty))$ is the extreme point of the function f(z) in |z|<1.

Theorem 1 Let f(z) be an infinite order holomorphic function. If its type function is $u(r) = r^{p(r)}$, then there exists a half straight line $B : \arg z = \theta_0 (0 \le \theta_0 < 2\pi)$, possessing the following property: If K is any positive integer, α, β are any two finite complex numbers and $\beta \ne 0$, then for any $\varepsilon \in (0, \frac{\pi}{2})$, there hold

$$\overline{\lim_{r\to\infty}}\log\{n(r,\theta_0,\varepsilon,f=\alpha)+n(r,\theta_0,\varepsilon,f^{(k)}=\beta)\}/[p(r)\log r]=1$$

Proof Evidently there exist a sequence $\{r^{(n)}\}$ satisfying following conditions:

$$r^{(n)} \in S_1, r^{(n)} > r_1(n = 1, 2, 3, \cdots)$$

$$\lim_{n\to\infty} r^{(n)} = +\infty, \lim_{n\to\infty} \frac{\log T(r^{(n)}, f)}{\log u(r^{(n)})} = 1.$$

Take $r = r^{(n)}$, $q = 64 \log u(r^{(n)})$ we have

$$m = m_n = \frac{T(r,f)}{6\beta q^2 \log r(\frac{4}{5}\log r + 1)} > 4, \ n = 1,2,3,\cdots$$

By Lemma 1, for any positive integer n, there exists a point $z_n = |z_n|e^{i\theta_n} (0 \le \theta_n < 2\pi)$ on the circular ring $(r^{(n)})^{1/5} < |z| < |r^{(n)}|$ and make $T_n : |z - z_n| < \frac{|z_n|}{64 \log u(r^{(n)})}$ be a full circle of the function f(z) with index number m_n .

We may assume the sequence $\{\theta_n\}$ has a limit θ_0 when $n \to \infty$, otherwise, we may take a convergence subsequence of $\{\theta_n\}$. Now we shall prove that θ_0 possesses the property of the theorem.

Otherwise, there exist a positive integer K_0 , two complex numbers $\alpha_0, \beta_0(\beta_0 \neq 0)$ and a positive number $\epsilon_0 \in (0, \frac{\pi}{2})$. When r is sufficiently large

$$n(r,\theta_0,\varepsilon_0,f=\alpha_0)+n(r,\theta_0,\varepsilon_0,f^{(k)}=\beta_0)<[u(r)]^{1-\eta},$$

where η is a positive number.

Let $g(z) = \frac{f(z) - \alpha_0}{\beta_0}$. Then Γ_n is also a full circle of the function g(z) with index number m_n . That means for any complex number α , we have $n(\Gamma_n, f = \alpha) \ge m_n$, at most except some α limited within two spherical circular S'_n, S''_n of the radius being e^{-m}

Let $\varepsilon_j = \frac{1}{64 \log u(r^{(j)})}$, $\Gamma'_j : |z - z_j| < 32 \varepsilon_j |z_j|$. We can easily prove when j is sufficiently large, Γ'_j is contained within angular domain $|\arg z - \theta_0| < \varepsilon_0$.

When j is sufficiently large, for any fixed j, let $h_j(t) = \frac{g(z_j+32\epsilon_j|z_j|t)}{(32\epsilon_j|z_j|)^{k_0}}$ then $h_j(t)$ is a holomorphic function on $|t| \leq 1$ and

$$n(1, h_j = 0) + n(1, h_j^{(k_0)} = 1) = n(\Gamma_j', g = 0) + n(\Gamma_j', g^{(k_0)} = 1)$$

 $\leq n(|z_j| + 32\varepsilon_j|z_j|, \theta_0, \varepsilon_0, f = \alpha_0) + n(|z_j| + 32\varepsilon_j|z_j|, \theta_0, \varepsilon_0, f^{(k_0)} = \beta_0)$
 $< [u(|z_j| + 32\varepsilon_j|z_j|)]^{1-\eta}.$

By Lemma 2, for any complex number a, there is

$$egin{split} n(rac{1}{32},h_j&=rac{a}{(32arepsilon_j|z_j|)^{k_0}}) = n(\Gamma_j,g=a) \ &< C_{k_0}\{[u(|z_j|+32arepsilon_j|z_j|)]^{(1-\eta)} + \lograc{1}{|g(z_j^*)/(32arepsilon_j|z_j|)^{k_0},rac{a}{(32arepsilon_j|z_j|)^{k_0}}|} + \ &\log^+\log^+|rac{g(z_j^*)}{(32arepsilon_j|z_j|)^{k_0}}|\} \end{split}$$

Since g(z) is a holomorphic function, hence when $0 < r < \rho < +\infty$

$$T(r,g) \leq \log^+ M(r,g) \leq rac{
ho + r}{
ho - r} T(
ho,g)$$

by $z_j^* \in \Gamma_j$, we have

$$\log^+|g(z_j^*)| \leq \frac{|z_j|+2\varepsilon_j|z_j|+|z_j^*|}{|z_j|+2\varepsilon_j|z_j|-|z_j^*|}T(|z_j|+2\varepsilon_j|z_j|,g) \leq \frac{3|z_j|}{\varepsilon_j|z_j|}T(|z_j|+2\varepsilon_j|z_j|,g),$$

combining $\lim_{r\to\infty}\frac{\log u(R)}{\log u(r)}=1, \lim_{r\to\infty}\frac{\log T(r,g)}{\log u(r)}=1$. We have

$$\log^+\log^+|g(z_j^*)| \leq C_1\log T(|z_j| + 2\varepsilon_1|z_j|, g) \leq C\log u(|z_j|) \leq C\log U(r^{(j)})$$

where C_1 and C are positive constants.

When α does not belong to S_j', S_j'' and $S_j''': |g(z_j^*), \alpha| \leq 1, m_j \leq n(\Gamma_j, g = \alpha) \leq 2C_{k_0}[u(|z_j| + 64\varepsilon_j|z_j|)]^{1-\frac{\eta}{2}}$. Hence we have

$$\lim_{j\to\infty}\frac{\log m_j}{\log u(r^{(j)})}\leq \lim_{j\to\infty}\frac{\left(1-\frac{\eta}{2}\right)\log 2C_{k_0}[U(|z_j|+64\varepsilon_j|z_j|)]}{\log u(r^{(j)})}\leq (1-\frac{\eta}{2}).$$

This is a contradiction to the fact $\lim_{j\to\infty} \frac{\log m_j}{\log u(r^{(j)})} = 1$. Hence the proof of Theorem 1 is completed.

Theorem 2 Let f(z) be an infinite order meromorphic function on the open plane, then there exists a half straight line $\arg z = \theta_0 (0 \le \theta_0 < 2\pi)$, possessing following property:

If K is any positive integer, α, β are any two finite complex numbers and $\beta \neq 0$, then for any $\varepsilon \in (0, \frac{\pi}{2})$ we have

$$\frac{\lim_{r\to\infty}\frac{\log\{n(r,\theta_0,\varepsilon,f=\infty)+n(r,\theta_0,\varepsilon,f=\alpha)+n(r,\theta_0,\varepsilon,f^{(k)}=\beta)}{\rho(r)\log r}=1.$$

The first part of proof of Theorem 2 can be completed in a similar way to that of Theorem 1. In order to prove $\log^+ \log^+ |g(z_i^*)| < C \log u(|z_i|)$, note that from by Poisson-Jensen formula, we have

$$egin{aligned} \log |g(z_j^*)| & \leq rac{3|z_j| + 2|z_j|}{3|z_j| - 2|z_j|} m(3|z_j|,g) + \sum_{|b_{j_q}'| \leq |3z_j|} \log |rac{(3|z_j|)^2 - b_{j_q}'z_j^*}{3|z_j|(z_j^* - b_{j_q}')}| \ & \leq 5 m(3|z_j|,g) + n(3|z_j|,g = \infty) \log 6|z_j| + \sum_{|b_{j_q}'| \leq 3|z_j|} \log rac{1}{|z_j^* - b_{j_q}'|}, \end{aligned}$$

where b'_{j_q} are the extrem points of the function g(z) in $|z| \leq 3|z_j|$. We can suppose when j is sufficiently large, $\varepsilon_j|z_j| \geq 1$, otherwise, we may consider

$$\Gamma_n^*: |z-z_n| \leq \varepsilon_n^* |z_n| = 1.$$

When $|z_j^*-b_{j_q}'|\geq 32arepsilon_j|z_j|,\lograc{1}{|z_j^*-b_{j_q}'|}<0,$ hence we have

$$\begin{split} &\sum_{|b'_{j_q}| \leq 3|z_j|} \log \frac{1}{|z_j^* - b'_{j_q}|} \leq \sum_{|z_j^* - b'_j| \leq 32|z_j|} \log \frac{1}{|z_j^* - b'_{j_q}|} \\ &= \sum_{|t_j^* - b_{j_q}| < 1} \log \frac{1}{|z_j + 32\varepsilon_j|z_j|t_j^* - (z_j + 32\varepsilon_j|z_j|b_{j_q})} \\ &< n(1, h_j = \infty) \log(400e) = n(\Gamma_j, g = \infty) \log(400e). \end{split}$$

Because g(z) is an infinite order meromorphic function, we get $\log^+ \log^+ |g(z^*)| < 2 \log u(|z_i|)$.

References:

- [1] ZHUANG Qi-tai. Queer Direction of Meromorphic Functions [M]. Science Press, 1982.
- [2] YANG Le. Value Distribution Theory and New Research [M]. Science Press, 1982.
- [3] SHUN Dao-chun. Public Borel's direction of infinte order meromorphic functions and derived function [J]. Journal of Match, 1987, 30:
- [4] HIONG King-lai. Sur les fonctions entieres et les fonctions m'eromorphes d'order infini [J]. Journ. de Math, Pures et appl, 9 s'esie, t., 1935, 14: 233-303.
- [5] HOWIE J M. An Introduction to Semigroup Theory [M]. Academic Press, London, New York and San Francisco, 1976.

无限级亚纯函数的幅角分布

姜淑珍 (长春师范学院数学系, 吉林 长春 130032)

摘 要: 本文研究了无限级亚纯函数的幅角分布,将有限级亚纯函数的两个分布定理推广 到无限级亚纯函数中.