Uniform Convergence of Higher Order Fejér Interpolation Polynomials in a Complex Domain *

TU Tian-liang, YANG Qiao

(Dept. of Info. Ingineering, North China Inst. of Hydroelectricity, Zhengzhou 450045, China)

Abstract: For a Jordan domain D in the complex plane satisfying certain boundary conditions a function $f \in B(\overline{D})$, we prove that the corresponding higher order Fejér interpolation polynomials based on Fejér points converge to f(z) uniformly on \overline{D} . These extend some known results.

Key words: complex domain; higher order Fejer interpolation; uniform convergence.

Classification: AMS(2000) 41A,30E/CLC O174.41,O174.5

Document code: A Article ID: 1000-341X(2002)01-0013-12

1. Introduction

Let D be a Jordan domian in the complex plane, $\partial D = \Gamma$. A function $z = \Psi(w)$ conformally maps |w| > 1 onto $C \setminus \overline{D}$ so that $\Psi(\infty) = \infty$, $\Psi'(\infty) > 0$. Without loss of generality we may assume $\Psi'(\infty) = 1$. Denote by $A(\overline{D})$ the functions analytic in D and continuous on $\overline{D} = D \cup \Gamma$. It is well known that for arbitrary system of nodes on unit circle there exists a function $f \in A(|z| \le 1)$ such that the corresponding Lagrange interpolation polynomials do not converge uniformly on $|z| \le 1^{[1]}$. In 1965 Curtiss^[2] considered the subclass $B(\overline{D})$ of $A(\overline{D})$ i.e., $f(z) \subset A(\overline{D})$ and f(z) has bounded variation on Γ . He obtained

Theorem A Let D be a Jordan domain enclosed by an analytic curve and $f \in B(\overline{D})$. Then for Fejér points one has

$$\lim_{n\to\infty}\|\ln(f,z)-f(z)\|_{\infty}=0,$$

where $||f||_{\infty} = \max_{z \in \overline{D}} |f(z)|, L_n(f,z)$ is Lagrange interpolation.

In 1969 Al'per and Kalinogorskaja^[3] improved the boundary condition of D in Theorem A, and obtained.

Foundation item: Supported by NSF of Henan Province (974050900)

Biography: TU Tian-liang (1932-), male, professor.

^{*}Received date: 1998-05-21

Theorem B Suppose that $D \in \Delta_{\alpha}^{"}$, i.e., $\Psi'(w)$ is continuous and does not vanish on $|w| \geq 1$, and $\Psi''(w)$ is continuous and belongs to Lip α , $0 < \alpha \leq 1$, on $|w| \geq 1$. Suppose $f \in B(\overline{D})$, then for Fejér points

$$\lim_{n\to\infty}||L_n(f,z)-f(z)||_{\infty}=0.$$

Consider Fejér points and non-negative integer q, and denote

$$A_{k,j}(z) = \left[\frac{\omega(z)}{z - z_k}\right]^{q+1} \frac{(z - z_k)^j}{j!} \sum_{\nu=0}^{q-j} \alpha_{k,\nu} (z - z_k)^{\nu}, j = 0, 1, \dots, q; k = 1, 2, \dots, n.$$
 (1.1)

where $\omega(z) = \prod_{k=1}^{n} (z - z_k)$, and $\alpha_{k,\nu}(q,n)$ is defined as

$$\left(\frac{z-z_k}{\omega(z)}\right)^{q+1} = \sum_{\nu=0}^{\infty} \alpha_{k,\nu} (z-z_k)^{\nu}. \tag{1.2}$$

The polynomial of degree N := (q+1)n - 1

$$H_N(f,z) = \sum_{k=1}^n \sum_{i=0}^q A_{k,J}(z) f^{(j)}(z_k)$$
 (1.3)

is called Hermite interpolation polynomial which satisfies interpolation conditions

$$H_N^{(j)}(f,z_k) = f^{(j)}(z_k), j = 0,1,2,\ldots,q; k = 1,2,\ldots,n.$$
 (1.4)

It is well known that when $m \leq N$, $H_N(p_m, z) = p_m(z)$, where $p_m(z)$ is a polynomial of degree m.

For arbitrary sequence of numbers $\{a_k^{(j)}\}, k=1,2,\ldots,n; j=1,2,\ldots,q$, the interpolation polynomial of degree N:=(q+1)n-1

$$\tilde{H}_{N}(f,z) = \sum_{k=1}^{n} A_{k,0}(z)f(z_{k}) + \sum_{k=1}^{n} \sum_{i=1}^{q} A_{k,i}(z)a_{k}^{(i)}$$
(1.5)

satisfies the interpolation conditions

$$\tilde{H}_N(f,z_k) = f(z_k), k = 1, 2, \dots, n,$$
 (1.6)

$$\tilde{H}_N^{(j)}(f, z_k) = a_k^{(j)}, k = 1, 2, \dots, n; j = 1, 2, \dots, q.$$
 (1.7)

If $a_k^{(j)} = 0$ in (1.5) and (1.7), then there is Fejér interpolation polynomial

$$F_N(f,z) = \sum_{k=1}^n A_{k,0}(z)f(z_k)$$
 (1.8)

which satisfies conditions

$$F_N(f, z_k) = f(z_k), k = 1, 2, \dots, n,$$
 (1.9)

$$F_N^{(j)}(f,z_k) = 0, k = 1, 2, \dots, n; j = 1, 2, \dots, q.$$
 (1.10)

For (1.8), if $q \ge 2$, then we call it higher order Fejér interpolation polynomial. In (1.3),(1.5) and (1.8) set q = 0, we obtain Lagrange interpolation polynomial of degree n - 1.

In 1939^[4] Lozinskii proved that for nodes system $\{e^{\frac{2k\pi i}{n}}\}_{k=1}^n$, there exists a function $f_0 \in A(|z| \le 1)$ such that

$$\overline{\lim_{n\to\infty}}F_{2n-1}(f_0,1)=\infty,$$

that is to say, when q=1, the corresponding Fejér interpolation polynomial does not converge uniformly to $f_0(z)$ on $|z| \leq 1$. It is natural to raise the following problem: for Fejér points and $f \in B(\overline{D})$, does Fejér interpolation polynomial converge uniformly to f(z) on \overline{D} ? If it is right, what is the boundary condition of D?

Denote by $\mu(t)$ the uniform module of continuity of function $\arg \psi'(e^{i\theta})$. If

$$\int_0^a \frac{\mu(t)}{t} |\ln t| \, \mathrm{d}t < +\infty, a > 0,$$

then we say $D \in J_0$. Similarly, denote by $\mu_1(t)$ the uniform module of continuity of function $\psi'(e^{i\theta})$ on |w| = 1. If

$$\int_0^a rac{\mu_1(t)}{t} |\mathrm{ln}t|^2 \,\mathrm{d}t < +\infty, a>0,$$

then we say $D \in J_1$. Denote by $\mu_2(t)$ the uniform module of continuity of $\psi''(s^{i\theta})$ on |w|=1, if

$$\int_0^a \frac{\mu_2(t)}{t} |\ln t| \, \mathrm{d}t < +\infty, a > 0,$$

then we say $D \in J_2^{[5]}$. It is clear that $J_0 \supset J_1 \supset J_2$. In this paper, the following theorems are obtained.

Theorem 1 Suppose $D \in J_2$ and $f \in B(\overline{D})$, then for Fejér points

$$\lim_{n\to\infty} \|f(z) - F_N(f,z)\|_{\infty} = 0, \ q \text{ is a non-negative integer.}$$

Theorem 2 Suppose $D \in J_2$ and $f \in B(\overline{D})$, then for Fejér points and arbitrary nonnegative integer q, under the additional condition

$$\max_{0 \le k \le n} |a_k^{(j)}| = o(\frac{n^j}{\ln n}), \ j = 1, 2, \dots, q, \tag{1.11}$$

one has

$$\lim_{n\to\infty}||H_N(f,z)-f(z)||_{\infty}=0.$$

Since that Lagrange interpolation is the particular case of interpolation (1.3), (1.5) or (1.8) and that $\Delta''_{\alpha} \in J_2$, Theorem 1 and Theorem 2 extend Theorem A and Theorem B, as well as the recent work ^[6] in which the domain D is unit disk.

2. Some Lemmas

Lemma 1 Suppose $D \in J_0$, then

$$1^{0} \quad \omega(z) = \prod_{k=1}^{n} (z - z_{k}) \text{ is bounded on } D$$

$$0 < A_{2}n \le \omega'(z_{k}) \le A_{1}n, A_{1}, A_{2} \text{ are constants, } k = 1, 2, \dots, n.$$

$$2^{0} \sum_{k=1}^{n} |l_{k}(z)|^{1+\delta} = \begin{cases} O(\ln n), & \delta = 0 \\ O(1), & \delta > 0 \end{cases}$$

$$(2.1)'$$

$$(2.2)'$$

$$0 < A_2 n \le \omega'(z_k) \le A_1 n, A_1, A_2 \text{ are constants, } k = 1, 2, \dots, n.$$
 (2.1)

$$2^{0} \sum_{k=1}^{n} |l_{k}(z)|^{1+\delta} = \begin{cases} O(\ln n), & \delta = 0 \\ O(1), & \delta > 0 \end{cases}$$
 (2.2)

$$l_{k}(z) = \frac{\omega(z)}{(z - z_{k})\omega'(z_{k})} = \prod_{l=1, l \neq k}^{n} \frac{z - z_{l}}{z_{k} - z_{l}}.$$

$$3^{0} \max_{z \in \overline{D}} \sum_{k=1}^{n} |A_{k,j}(z)| = O\left(\frac{\ln n}{n^{j}}\right), j = 1, 2, \dots, q.$$
(2.3)

The conclusions 2^0 and 3^0 had been obtained under the condition J_1 or J_2 respectively in [5]. However, all the conclusions $1^0 \sim 3^0$ can be obtained $1^{[7]}$ under only the condition j_0 .

Lemma 2 Suppose $D \in J_2, z_k (k = 1, 2, ..., n)$ is Fejér point, then

$$\frac{\mathrm{d}}{\mathrm{d}z}\left(\frac{z-z_k}{\omega(z)}\right)\Big|_{z=z_k}=-\frac{1}{2}+O\left(\frac{\ln n}{n}\right), \quad k=1,2,\ldots,n.$$

Proof The function $\frac{z-z_k}{\omega(z)}$ is analytic in the neighborhood of z_k .

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}z} \left(\frac{z - z_k}{\omega(z)} \right) \Big|_{z = z_k} &= \lim_{z \to z_k} \frac{\mathrm{d}}{\mathrm{d}z} \left(\frac{z - z_k}{\omega(z)} \right) \\ &= \lim_{z \to z_k} \frac{\omega(z) - (z - z_k)\omega'(z)}{\omega^2(z)} \\ &= \lim_{z \to z_k} \frac{\omega'(z) - \omega'(z) - (z - z_k)\omega''(z)}{2\omega(z)\omega'(z)} \\ &= -\frac{\omega''(z_k)}{2\omega'(z_k)^2}. \end{aligned}$$

by the known result^[8]:

$$\frac{\omega''(z_k)}{\omega'(z_k)^2}=1+O(\frac{\ln n}{n}),$$

Lemma 2 is proved.

Lemma 3 Suppose $D \in J_2$ and $\{z_k\}_{k=1}^n$ are Fejér points. Then

$$a_{k,0}=\frac{1}{\omega'(z_k)^{q+1}},$$

$$a_{k,1} = (q+1) \frac{1}{\omega'(z_k)^q} [-\frac{1}{2} + O(\frac{\ln n}{n})],$$

for $2 \le \nu \le q$, we have

$$a_{k,\nu} = \frac{(q+1)!}{\nu!(q+1-\nu)!} \frac{1}{\omega'(z_k)^{q+1-\nu}} [(-\frac{1}{2})^{\nu} + O(\frac{\ln n}{n})] + \frac{1}{\omega'(z_k)^{q+2-\nu}} \varphi_{k,\nu}(z_k),$$

where $\varphi_{k,\nu}(z_k)$ is a constant

Proof The functions $\frac{z-z_k}{\omega(z)}$ and $(\frac{z-z_k}{\omega(z)})^{q+1}$ are both analytic in the neighborhood of z_k , and so are their derivatives. According to the definition (1.2), we have

$$\begin{aligned} a_{k,0} &= \left(\frac{z-z_k}{\omega(z)}\right)^{q+1} \Big|_{z=z_k} = \frac{1}{\omega'(z_k)^{q+1}}, \\ a_{k,1} &= \frac{\mathrm{d}}{\mathrm{d}z} \left(\frac{z-z_k}{\omega(z)}\right)^{q+1} \Big|_{z_k} = (q+1) \left[\left(\frac{z-z_k}{\omega(z)}\right)^q \left(\frac{z-z_k}{\omega(z)}\right)' \right]_{z_k} \\ &= (q+1) \frac{1}{\omega'(z_k)^q} \left[-\frac{1}{2} + O\left(\frac{\ln n}{n}\right) \right], \text{(Lemma2)} \\ a_{k,2} &= \frac{1}{2} \left[\left(\frac{z-z_k}{\omega(z)}\right)^{q+1} \right]_{z_k}^{"} \\ &= \frac{(q+1)}{2!} \left\{ q \left(\frac{z-z_k}{\omega(z)}\right)^{q-1} \left[\left(\frac{z-z_k}{\omega(z)}\right)' \right]^2 + \left(\frac{z-z_k}{\omega(z)}\right)^q \left(\frac{z-z_k}{\omega(z)}\right)^{"} \right\}_{z_k} \\ &= \frac{(q+1)!}{2!(q+1-2)!} \left\{ \left(\frac{z-z_k}{\omega(z)}\right)^{q-1} \left[\left(\frac{z-z_k}{\omega(z)}\right)' \right]^2 \right\}_{z_k} + \left[\left(\frac{z-z_k}{\omega(z)}\right)^q \varphi_{k,2}(z) \right]_{z_k} \end{aligned}$$

where $\varphi_{k,2}(z) = \frac{(q+1)!}{2!(q+1-2)!} (\frac{z-z_k}{\omega(z)})''$ is analytic in the neighborhood of z_k , consequently, $\varphi_{k,2}(z_k)$ is a constant. Thus, applying Lemma 2, we have

$$a_{k,2} = \frac{(q+1)!}{2!(q+1-2)!} \frac{1}{\omega'(z)^{q-1}} [(-\frac{1}{2})^2 + O(\frac{\ln n}{n})] + \frac{1}{\omega'(z_k)^q} \varphi_{k,2}(z_k).$$

Similarly,

$$\begin{split} a_{k,3} &= \frac{(q+1)!}{3!(q+1-3)!} \{ (\frac{z-z_k}{\omega(z)})^{q-2} [(\frac{z-z_k}{\omega(z)})']^3 + 3q (\frac{z-z_k}{\omega(z)})^{q-1} (\frac{z-z_k}{\omega(z)})' (\frac{z-z_k}{\omega(z)})'' + \\ &\quad (\frac{z-z_k}{\omega(z)})^q (\frac{z-z_k}{\omega(z)})''' \}_{z_k} \\ &= \frac{(q+1)!}{3!(q+1-3)!} \{ (\frac{z-z_k}{\omega(z)})_{z_k}^{q-2} [(\frac{z-z_k}{\omega(z)})_{z_k}']^3 \} + [(\frac{z-z_k}{\omega(z)})^{q-1} \varphi_{k,3}(z)]_{z_k} \\ &= \frac{(q+1)!}{3!(q+1-3)!} \frac{1}{\omega'(z_k)^{q-2}} [(-\frac{1}{2})^3 + O(\frac{\ln n}{n})] + \frac{1}{\omega'(z_k)^{q-1}} \varphi_{k,3}(z_k), \end{split}$$

where $\varphi_{k,3}(z) = \frac{(q+1)!}{3!(q+1-3)!} \left[3q(\frac{z-z_k}{\omega(z)})'(\frac{z-z_k}{\omega(z)})'' + (\frac{z-z_k}{\omega(z)})(\frac{z-z_k}{\omega(z)})''' \right]$ is analytic in the neighborhood of z_k .

For general $\nu, 2 \leq \nu \leq q$, we have

$$\begin{split} a_{k,\nu} &= \frac{(q+1)!}{\nu!(q+1-\nu)!} \{ (\frac{z-z_k}{\omega(z)})']'' \}_{z_k} + [(\frac{z-z_k}{\omega(z)})^{q+1-(\nu-1)} \varphi_{k,\nu}(z)]_{z_k} \\ &= \frac{(q+1)!}{\nu!(q+1-\nu)!} \frac{1}{\omega'(z_k)^{k+1-\nu}} [(\frac{z-z_k}{\omega(z)})'_{z_k}]^{\nu} + \frac{1}{\omega'(z_k)^{q+2-\nu}} \varphi_{k,\nu}(z_k), \end{split}$$

where $\varphi_{k,\nu}(z)$ is analytic in the neighborhood of z_k . By (2.1)' and Lemma 2, the proof of Lemma 3 is completed.

Lemma 4 Suppose that $\psi''(w)$ is continuous on $|w| \geq 1$ and $f \in B(\overline{D})$. Then the Lagrange interpolation polynomial based on Fejér points

$$L_n(f,z) = \sum_{k=1}^n l_k(z) f(z_k)$$

uniformly converges to f(z) on \overline{D} , i.e.

$$\lim_{n\to\infty}\|L_n(f,z)-f(z)\|_{\infty}=0.$$

Proof Step 1. Since $\psi''(w)$ continues on $|w| \geq 1$, it follows that

$$\psi(w) = \psi(u) + \psi'(u)(w - u) + \int_{u}^{w} \psi''(t)(w - t)dt$$
 (2.4)

where the intergration path is along the straight line connecting w(|w|=1) with u(|u|>1) if \overline{wu} does not intersect circle |w|=1, otherwise, it is along the circular arc and exterior part of \overline{wu} . From (2.4) one has

$$|\psi(w) - \psi(u) - \psi'(u)(w-u)| = O(|w-u|^2).$$

It follows from Lemma 1 that

$$\left|\frac{1}{w-u} - \frac{\psi'(u)}{\psi(w) - \psi(u)}\right| \le B_0, \ B_0 - -- \text{const.}$$
 (2.5)

Step 2. It is well known that for $f \in B(\overline{D})$, there is a polynomial P(z) such that

$$|f(z)-P(z)|<\varepsilon.$$

Let $\triangle(z) = f(z) - P(z)$, so $\triangle(z) \in B(\overline{D})$, and

$$|\triangle(z)| < \varepsilon. \tag{2.6}$$

Consider the Faber transformation

$$\frac{1}{2\pi i} \int_{|w|=1} \frac{\triangle [\psi(u)]}{u-w} \mathrm{d}u$$

— 18 —

which defines two functions $\varphi_1(w)$ and $\varphi_2(w)$ analytic in |w| < 1 and |w| > 1 respectively. Under the assumption that $\psi''(w)$ continues on |w| > 1, one has^[9]

 $1^0 \varphi_1(w)$ and $\varphi_2(w)$ are continuous on $|w| \leq 1$ and $|w| \geq 1$ respectively, moreover

$$\|\varphi_1(w)\|_{\infty} = O(1)\|\triangle\|_{\infty}, \quad \|\varphi_2(w)\|_{\infty} = O(1)\|\triangle\|_{\infty};$$
 (2.7)

$$2^{0} \varphi_{1}(w) \in B(|w| \leq 1), \varphi_{2}(w) \in B(|w| \geq 1); \tag{2.8}$$

$$3^{0} \triangle[\psi(w)] = \varphi_{1}(w) - \varphi_{2}(w), \ |w| = 1.$$
 (2.9)

Step 3. Suppose $z \in \Gamma$, and let n be large enough,

$$f(z) - L_{n}(f, z) = P(z) + \triangle(z) - L_{n}(P, z) - L_{n}(\triangle, z)$$

$$= \triangle(z) - L_{n}(\triangle, z)$$

$$= \triangle(z) - \sum_{k=1}^{n} \triangle(z_{k}) \frac{\omega(z)}{\omega'(z_{k})(z - z_{k})}$$

$$= \triangle[\psi(w)] - \sum_{k=1}^{n} \triangle[\psi(w_{k})] \frac{(w^{n} - 1) \prod_{n}(w)}{\psi(w) - \psi(w_{k})} \frac{w_{k} \psi'(w_{k})}{n \prod_{n}(w_{k})}$$

$$= \triangle[\psi(w)] - \sum_{k=1}^{n} \triangle[\psi(w_{k})] \frac{w^{n} - 1}{n(w - w_{k})}$$

$$- \frac{w^{n} - 1}{n} \sum_{k=1}^{n} \triangle[\psi(w_{k})] w_{k} \left[\frac{\psi'(w_{k})}{\psi(w) - \psi(w_{k})} - \frac{1}{w - w_{k}} \right]$$

$$- \frac{1}{n} \sum_{k=1}^{n} n \triangle[\psi(w_{k})] \frac{w_{k} \psi'(w_{k})(w_{n} - 1)}{\psi(w) - \psi(w_{k})} \left[\frac{\prod_{n}(w)}{\prod_{n}(w_{k})} - 1 \right]$$
 (2.10)

where $\prod_n(w)=\prod_{k=1}^n rac{z-z_k}{w-w_k}.$ For brevity let $riangle[\psi(w)]= riangle(w).$ Then

$$f(z) - L_n(f,z) = \varphi_1(w) - \varphi_2(w) - L_n(\varphi_1,w) + L_n(\varphi_2,w) + B(\triangle,w) + C(\triangle,w)$$
 (2.11)

where $B(\triangle, w)$ and $C(\triangle, w)$ denote the last two terms in (2.10) respectively. We are going to estimate every term in the right hand side of equality (2.11).

Since $\varphi_1 \in B(|w| \le 1)$, by virtue of Curtiss theorem^[2], for |w| = 1 one has

$$\lim_{n\to\infty} \|\varphi_1(w) - L_n(\varphi_1, w)\|_{\infty} = 0. \tag{2.12}$$

By virtue of (2.7)

$$||\varphi_2||_{\infty} = O(1)\varepsilon. \tag{2.13}$$

By virtue of (2.5),

$$||B(\triangle, w)||_{\infty} = O(1)\varepsilon. \tag{2.14}$$

Since $J_1 \supset J_2$, it follows that^[5]

$$\Big|\frac{\prod_n(w)}{\prod_n(w_k)}-1\Big|=o(\frac{1}{\ln n}),$$

and so

$$||C(\triangle, w)||_{\infty} = o(1) O(\ln n) o(\frac{1}{\ln n}) = o(1).$$
 (2.15)

It remains to prove that

$$||L_n(\varphi_2, w)||_{\infty} = O(\varepsilon).$$

By similar argument in [3.p.22], Lemma 4 is proved.

Lemma 4 has improved the boundary condition of D in Theorem A and Theorem B.

3. The proofs of Theorem 1 and Theorem 2

Proof of Theorem 1 In Section 2 we have mentioned that for any $\varepsilon > 0$, there is a polynomial such that

$$|f(z)-P(z)|<\varepsilon.$$

Note $\triangle(z) = f(z) - P(z)$, then $\triangle(z) \in B(\overline{D})$ provided $f \in B(\overline{D})$, and

$$|\triangle(z)| < \varepsilon. \tag{3.1}$$

Taking n large enough, from Section 1 we have $H_N(p,z) = P(z)$, thus

$$F_{N}(f,z) - f(z) = F_{N}(f,z) - F_{N}(P,z) + F_{N}(P,z) - H_{N}(P,z) + P(z) - f(z)$$

$$= F_{N}(\triangle,z) - \sum_{k=1}^{n} \sum_{j=1}^{q} A_{k,j}(z) P^{(j)}(z_{k}) - \triangle(z)$$

$$= : I - II - III.$$
(3.2)

Since p(z) is independent of n, $p^{(j)}(z_k)$ is uniformly bounded for k and j, from (2.3) there is

$$||II||_{\infty} \leq \max_{z \in \overline{D}} \sum_{i=1}^{q} \sum_{k=1}^{n} |A_{k,j}(z)p^{(j)}(z_k)| = \sum_{j=1}^{q} O(\frac{\ln n}{n^j}) \to 0, \ n \to \infty.$$
 (3.3)

Clearly, it is enough to estimate I.

$$F_{N}(\triangle, z) = \sum_{k=1}^{n} A_{k,o}(z) \triangle (z_{k}) = \sum_{k=1}^{n} \left(\frac{\omega(z)}{z - z_{k}}\right)^{q+1} \sum_{\nu=0}^{q} \alpha_{k,\nu} (z - z_{k})^{\nu} \triangle (z_{k})$$

$$= \sum_{\nu=0}^{q} \sum_{k=1}^{n} \triangle (z_{k}) \alpha_{k,\nu} \frac{\omega(z)^{q+1}}{(z - z_{k})^{q+1-\nu}} =: \sum_{\nu=0}^{q} Q_{\nu}.$$
(3.4)

We show that $||Q_{\nu}||_{\infty} \to 0$, $n \to \infty$, $\nu = 0, 1, 2, \dots, q$.

Set $\nu = 0$ while $q \ge 0$. By Lemma 3

$$Q_{0} = \sum_{k=1}^{n} \alpha_{k,0} \left(\frac{\omega(z)}{z - z_{k}}\right)^{q+1} \triangle(z_{k}) = \sum_{k=1}^{n} \frac{1}{\omega'(z_{k})^{q+1}} l_{k}(z)^{q+1} \omega'(z_{k})^{q+1} \triangle(z_{k})$$

$$= \sum_{k=1}^{n} l_{k}(z)^{q+1} \triangle(z). \tag{3.5}$$

If q = 0, rewrite (3.5) as

$$Q_0 = \sum_{k=1}^n l_k(z)^{q+1} \triangle(z) = L_n(\triangle, z) - \triangle(z) + \triangle(z). \tag{3.6}$$

Since $\triangle(z) \in B(\overline{D})$, from Lemma 4

$$||Q_0||_{\infty} \leq 2\varepsilon$$
, when $n > n_0$.

If $q \geq 1$, it follows from (3.5) and (2.2)', that $\|Q_0\| < \varepsilon$. Thus when $q \geq 0$, one has

$$||Q_0||_{\infty} \to 0$$
, when $n \to \infty$. (3.7)

Set $\nu = 1$ while $q \ge 1$, by applying Lemma 3, one has

$$Q_{1} = \sum_{k=1}^{n} \alpha_{k,1} \frac{\omega(z)^{q+1}}{(z-z_{k})^{q}} \triangle(z_{k})$$

$$= \sum_{k=1}^{n} (q+1) \frac{1}{\omega'(z_{k})^{q}} \left[-\frac{1}{2} + O(\frac{\ln n}{n}) \right] l_{k}(z)^{q} \omega'(z_{k})^{q} \omega(z) \triangle(z_{k})$$

$$= (q+1)\omega(z) \sum_{k=1}^{n} (-\frac{1}{2}) l_{k}(z)^{q} \triangle(z_{k}) + (q+1)\omega(z) \sum_{k=1}^{n} l_{k}(z)^{q} \triangle(z) O(\frac{\ln n}{n})$$

$$= : A + B.$$

We estimate A as follows. When q = 1, write

$$egin{aligned} A = &(q+1)\omega(z)\sum_{k=1}^n(-rac{1}{2})l_k(z)^q riangle(z_k)\ = &-rac{q+1}{2}\omega(z)[L_n(riangle,z)- riangle(z)+ riangle(z)]. \end{aligned}$$

From (2.1) and Lemma 4, one has

$$||A||_{\infty} = O(1)\varepsilon$$
, when $n > n_1$.

If $q \ge 2$, from (2.2) and (2.1),

$$||A||_{\infty} = ||(q+1)(-\frac{1}{2})\omega(z)\sum_{k=1}^{n}l_{k}(z)^{q}\triangle(z_{k})||_{\infty} = O(\varepsilon).$$

When q = 1, we have

$$||B||_{\infty} = O(\frac{\ln n}{n})O(\ln n)\varepsilon = \varepsilon O(\frac{\ln^2 n}{n});$$

when $q \geq 2$,

$$||B||_{\infty} = O(1)\varepsilon O(\frac{\ln n}{n}) = \varepsilon O(\frac{\ln n}{n}).$$

Thus, when $q \geq 1$, we have

$$||Q_1||_{\infty} \to 0, n \to \infty. \tag{3.8}$$

Similarly, consider $\nu\colon 2\leq \nu\leq q$

$$\begin{split} Q_{\nu} &= \sum_{k=1}^{n} \alpha_{k,\nu} \frac{\omega(z)^{q+1}}{(z-z_{k})^{k+1-\nu}} \triangle(z_{k}) \\ &= \sum_{k=1}^{n} \{ \frac{(q+1)!}{\nu!(q+1-\nu)!} \frac{1}{\omega'(z_{k})^{k+1-\nu}} [(-\frac{1}{2})^{\nu} + O(\frac{\ln n}{n})] + \\ &\frac{1}{\omega'(z_{k})^{q+2-\nu}} \varphi_{k,\nu}(z_{k}) \} \omega(z)^{\nu} l_{k}(z)^{q+1-\nu} \omega'(z-k)^{q+1-\nu} \triangle(z_{k}) \\ &= \omega(z)^{\nu} \frac{(q+1)!}{\nu!(q+1-\nu)!} \sum_{k=1}^{n} \frac{1}{\omega'(z_{k})^{q+1-\nu}} (-\frac{1}{2})^{\nu} l_{k}(z)^{q+1-\nu} \omega'(z)^{q+1-\nu} \triangle(z_{k}) + \\ &\omega^{\nu} \frac{(q+1)!}{\nu!(q+1-\nu)!} \sum_{k=1}^{n} \frac{1}{\omega'(z_{k})^{q+1-\nu}} l_{k}(z)^{q+1-\nu} \omega'(z_{k})^{q+1-\nu} \triangle(z_{k}) O(\frac{\ln n}{n}) + \\ &\omega(z)^{\nu} \sum_{k=1}^{n} \frac{1}{\omega'(z_{k})^{q+2-\nu}} \varphi_{k,\nu}(z_{k}) l_{k}(z)^{q+1-\nu} \omega'(z_{k})^{q+1-\nu} \triangle(z_{k}) \\ &= : A_{\nu} + B_{\nu} + C_{\nu}. \end{split}$$

Consider

$$A_{
u} = (-rac{1}{2})^{
u}\omega(z)^{
u}rac{q+1)!}{
u!(q+1-
u)!}\sum_{k=1}^{n}l_{k}(z)^{q+1-
u}\triangle(z_{k}),$$

When $q + 1 - \nu = 1$, from (2.1) and Lemma 4

$$||A_{\nu}||_{\infty} = ||(-\frac{1}{2})^{\nu} \frac{(q+1)!}{\nu!(q+1-\nu)!} [L_{n}(\triangle,z) - \triangle(z) + \triangle(z)]||_{\infty}$$

= $O(\varepsilon), n > n_{2}.$

When $q + 1 - \nu \ge 2$, from (2.1) and (2.2)',

$$||A_{\nu}||_{\infty} = O(1)\varepsilon.$$

Consider

$$B_{
u} = \omega(z)^{
u} rac{(q+1)!}{
u!(q+1-
u)!} \sum_{k=1}^{n} l_k(z)^{q+1-
u} \triangle(z_k) O(rac{\ln n}{n}),$$
 $\|B_{
u}\|_{\infty} = egin{cases} O(rac{\ln n}{n}) \|L_n(\triangle,z) - \triangle(z) + \triangle(z)\|_{\infty} = arepsilon O(rac{\ln n}{n}), & q+1-
u = 1, \ O(1)arepsilon O(rac{\ln n}{n}) = arepsilon O(rac{\ln n}{n}), & q+1-
u \geq 2. \end{cases}$

Finally,

$$C_{
u} = \omega^{
u} \sum_{k=1}^{n} rac{1}{\omega'(z_k)} arphi_{k,
u}(z_k) l_k(z)^{q+1-
u} riangle(z_k),$$

— 22 **—**

$$||C_
u||_\infty = egin{cases} O(rac{1}{n})O(\ln n)arepsilon = arepsilon O(rac{\ln n}{n}), & q+1-
u=1, \ O(rac{1}{n})arepsilon, & q+1-
u \geq 2. \end{cases}$$

By summarizing the above argument, it follows that

$$||Q_{\nu}||_{\infty} \to 0, n \to \infty, 2 \le \nu \le q. \tag{3.9}$$

Combining (3.4) with (3.7), (3.8) and (3.9), we have

$$||F_N(\triangle,z)||_{\infty} \to 0, n \to \infty.$$
 (3.10)

From (3.1), (3.2), (3.3) and (3.10), Theorem 1 is proved.

Proof of Theorem 2 Suppose P(z) satisfies the conditions in Theorem 1.

$$f(z) - \tilde{H}_{N}(f,z) = f(z) - P(z) + P(z) - \tilde{H}_{N}(f,z)$$

$$= \triangle(z) - F_{N}(\triangle,z) + \sum_{k=1}^{n} \sum_{j=1}^{q} A_{k,j}(z) P^{(j)}(z_{k}) - \sum_{k=1}^{n} \sum_{j=1}^{q} A_{k,j}(z) \alpha_{k}^{(j)}.$$
(3.11)

Since $P^{(j)}(z_k)$ are uniformly bounded with respect to k and j, it follows from (2.3) that

$$\|\sum_{k=1}^n\sum_{j=1}^q A_{k,j}(z)P^{(j)}(z_k)\|_{\infty}=\sum_{j=1}^q O(rac{\ln n}{n}) o 0,\ n o 0.$$

From (2.3) and (1.1),

$$\|\sum_{k=1}^n\sum_{j=1}^q A_{k,j}(z)lpha_k^{(j)}\|_\infty=o(1), n o\infty.$$

By considering (3.1) and (3.10), Theorem 2 is proved.

References:

- [1] AL'PER S YA. On convergence of Lagrange interpolation polynomials in complex domain [J]. UMN, 1956, 11(5): 44-50. (in Russion)
- [2] CURTISS H. Convergence of complex Lagrange interpolation polynomials on the locus of interpolation points [J]. Duke Math. J., 1965, 32(2): 187-204.
- [3] AL'PER S YA, KALINOGORSKAYA G N. On the convergence of Lagrange interpolation polynomials in complex domain [J]. Izv. Vysš. Zav. Matem., 1969, 11: 13-23. (in Russion)
- [4] LOZINSKII S. On Fejér interpolatary procedure [J]. DAN SSSR, 1939, 24(4): 318-320. (in Russion)
- [5] CHUI C R, SHEN X C. On Hermite-Fejér interpolation in a Jordan domain [J]. Trans. Amer. Math. Soc., 1991, 323(1): 93-109.

- [6] ZHU Chang-qing. On uniform convergence of $(0, 1, \dots, q)$ Hermite-Fejér interpolation polynomiasl at roots of unity [J]. J. Engineering Mathematics, 1992, 9(4): 85-92.
- [7] TU Tian-liang. Remarks on the paper "On Hermite-Fejér interpolation in a Jordan domain" [J]. J. Math., 1997, 7(4): 463-467.
- [8] TU Tian-liang, YANG Qian, CHEN Shun-qing. Simultaneous approximation to function and itsderivatives by Hermite interpolation in a smooth domain [J]. Mathematica Applicata, 1996, 9(3): 297-320.
- [9] SHEN Xie-chang, SHUAI Bin-peng. Uniform convergence of Lagrange interpolation polynomials at asymptotic Fejér points in a Jordan domain [J]. Approx. Theory and Its Appl., 1991, 7(1): 39-55.

复域中高阶 Fejér 插值的一致收敛性

涂天亮, 杨乔

(华北水电学院信息工程系, 河南 郑州 450045)

摘 要: 对于复域中满足某种条件的 Jordan 区域 D 和函数 $f \in B(\overline{D})$, 证明了基于 Fejér 点的高阶 Fejér 插值多项式一致收敛于对应的函数 f(z) 于 \overline{D} 上. 本文中的这些定理推广了某些已知的结果.