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Abstract: For a Jordan domain D in the complex plane satisfying certain boundary
conditions a function f € B(D), we prove that the corresponding higher order Fejér
interpolation polynomials based on Fejér points converge to f(z) uniformly on D. These
extend some known results.
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1. Introduction

Let D be a Jordan domian in the complex plane, D = I'. A function z = ¥(w)
conformally maps |w| > 1 onto C\D so that ¥(c0) = oo, ¥'(c0) > 0. Without loss of
generality we may assume ¥’(00) = 1. Denote by A(D) the functions analytic in D and
continuous on D = D |JT. It is well known that for arbitrary system of nodes on unit circle
there exists a function f € A(|z| < 1) such that the corresponding Lagrange interpolation
polynomials do not converge uniformly on |z| < 1[1l. In 1965 Curtiss?) considered the
subclass B(D) of A(D) i.e., f(z) C A(D) and f(z) has bounded variation on I'. He
obtained

Theorem A Let D be a Jordan domain enclosed by an analytic curve and f € B(D).
Then for Fejér points one has

Tim [{In(f,2) - £(2)lleo = 0,

where ||f||oc = max|f(z)|, Ln(f,z) is Lagrange interpolation.
zeD

In 1969 Al'per and Ka]jnogorska.ja[:’] improved the boundary condition of D in Theorem
A, and obtained.
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Theorem B Suppose that D € Al, ie., ¥/(w) is continuous and does not vanish on
lw| > 1, and ¥"(w) is continuous and belongs to Lipa, 0 < a <1, on |w| > 1. Suppose
J € B(D), then for Fejér points

lim ||Ln(f,2) - f(2)llo = 0.

n—0o0

Consider Fejér points and non-negative integer ¢, and denote

Ak,,(z)—[“’(z) o+ ]z‘) Zak,,(z—zk), =0,1,...,g;k=1,2,...,n. (1.1)

where w(z) = H(z — z), and oy (g, n) is defined as
k=1

2= %kyet1 Eaku(z_zk . (1.2)

The polynomial of degree N := (g + 1)n — 1
n’ g
Hn(f,2) =Y. Aes(2)f9 (z) (1.3)
k=1 7=0
is called Hermite interpolation polynomial which satisfies interpolation conditions
(J)(f 2;) = f“)(zk) i=012,...,¢:k=1,2,...,n. (1.4)

It is well known that when m < N, Hn(pm, z) = pm(z), where p,,(z) is a polynomial
of degree m.

For arbitrary sequence of numbers {a}cj)},k =12,...,n;5=1,2,...,q, the interpola-
tion polynomial of degree N := (¢ + 1)n -1

An(f,z) = Z Aco(2)f(z) + E Z A j(z)al?) (1.5)

k=1 j=1

satisfies the interpolation conditions
HN(f,Zk) = f(zk),k = 1,2,...,n, (1.6)

AQf,z)=a k=1,2,... 5 =1,2,...,4q. (1.7)

If a}cj) = 0in (1.5) and (1.7), then there is Fejér interpolation polynomial

w(f,2) = Z Ako(2)f(21) (1.8)

k=1
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which satisfies conditions
FN(f,Zk) = f(zk),k =1,2,...,n, (1.9)

FI(\?)(f,Zk):0,k=1,2,~--an;j:112""’q' (110)

For (1.8), if ¢ > 2, then we call it higher order Fejér interpolation polynomial. In (1.3),(1.5)
and (1.8) set ¢ = 0,we obtain Lagrange interpolation polynomial of degree n — 1.

In 193914 Lozinskii proved that for nodes system {e%ﬁ}z:l, there exists a function
fo € A(Jz| < 1) such that
n]‘i_’rgoFZn—l(.fUa 1) = 00,

that is to say, when ¢ = 1, the corresponding Fejér interpolation polynomial does not
converge uniformly to fo(z) on |z| < 1. It is natural to raise the following problem: for
Fejér points and f € B(D), does Fejér interpolation polynomial converge uniformly to
f(z) on D? If it is right, what is the boundary condition of D?

Denote by u(t) the uniform module of continuity of function argy’(e?). If

* u(t)

0

then we say D € Jy. Similarly, denote by g;(t) the uniform module of continuity of
function ¢'(e**) on |w| = 1. If

a t
/ “IT()Ilntht < +00,a > 0,
4]

then we say D € J;. Denote by p,(t) the uniform module of continuity of ¥"(s*) on
|lw| = 1, if

@ t
/ MT()Ilntldt < +o0,a >0,
0

then we say D € Jz[r’]. It is clear that Jy D J1 D J2. In this paper, the following theorems
are obtained.

Theorem 1 Suppose D € J, and f € B(D), then for Fejér points

linolC l1f(z) — Fn(f, 2)l|l~ = 0, g is a non—negative integer.
Theorem 2 Suppose D € J, and f € B(D), then for Fejér points and arbitrary non-

negative integer q, under the additional condition

D= o Py 19 1.11
g ok = ol g =12 (1

one has

lim [|Hy(f,2) — £()lle = 0.

n—oc
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Since that Lagrange interpolation is the particular case of interpolation (1.3), (1.5) or
(1.8) and that A € J;, Theorem 1 and Theorem 2 extend Theorem A and Theorem B,
as well as the recent work [®! in which the domain D is unit disk.

2. Some Lemmas

Lemma 1 Suppose D € Jy, then

1° w(z) = H(z — z;) is bounded on D (2.1)
k=1
0 < Aan < W'(z) < Ain, A1, A, are constants, k = 1,2,---,n. (2.1)
n O(lnn), 6=0 2.2
WZmuWM:{‘m’ 22
k=1 o(1), &§>0 (2:2)
where
w(z) o z—z
h(z) = —22) _ Z-a
k(2) (z — zr)w'(zi) =114k 2k T A
30 maxi|Akj(z)|=0(£1.l—),j=1,2,...,q. (2.3)
zeD ke1 ' nJ

The conclusions 2° and 3° had been obtained under the condition J; or J; respectively
in [5]. However, all the conclusions 1° ~ 3% can be obtained!”) under only the condition

Jo-
Lemma 2 Suppose D € Ja, z.(k = 1,2,...,n) is Fejér point, then

d z- 2z 1 Inn
_— — = — = _— = 2 - .
2o e 5+0(==) k=12...,n
Proof The function zw;zz)k is analytic in the neighborhood of z;.
_(l(z—zk B mi(z—-zk)
dz* w(z) le=zx 2=z dz” w(z)
— lim w(z) — (2 = zx)'(2)
ZZg wz(z)
e W(2) ()~ (2 - ) (2)
= 2w(z)w'(2)
_ w//(zk)
T 2w!(z)?
by the known result!®:
w'(zk) Inn
w'(z)? b 0(—11—)’

Lemma 2 is proved.

Lemma 3 Suppose D € J; and {z.}}_, are Fejér points. Then
1
aro = ———0,
0T Wz

— 16 —

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



1
L1 = 1)D— [ 4+ O0(——
Ak (qu' )w'(Zk)q[ 2 + ( )}’
for 2 < v < ¢, we have

(¢ +1)! 1 1, Inn 1
vi(g+1-v) w:(zk)q+1-u[(_§) + 0(_71—)] + W’Pk,u(‘zk)a

arv =

where ¢y, ,(2;) Is a constant.

Proof The functions - —( z)k d (%)‘”1 are both analytic in the neighborhood of
w(z w(z
z, and so are their derivatives. According to the definition (1.2), we have
(2" Zkgh 1
a0 —( w(z) ) 2=z, w/(zk)q+1

Z—= 2k, Z— 2Z

w(z).),] T w(z) A w(z)

_ (Q-I—l). z— a-110% = Zk yp2 z -2k, ,
=g 41 _2)!{( o) 2 a1 o(2) Y%}z H(T(z) Y er2(2))z

)/I}Zk

(g +1) (z - 2
2g+1-2)"" w(z)
quently, ¢ 2(zz) is a constant. Thus, applying Lemma 2, we have

where ¢ ,(2) = )" is analytic in the neighborhood of 2, conse-

= aperegats P + O + S
Similarly,
S (g + 1) Z = Zkg_ar = Zk\n3 Z =2k g 1,2 2y, 2= 2k,
S e TS A (s ik S i Sl e s
o)
_ (Q+1)! 27 2k yg-2 Z = Zkyg_1 .
‘m@+1~3y“ ()) (E ()LJ}+K ()) Pi3(2))z,
_ (g+ 1) 1 1
T3¢ +1- 3)!w'(zk)a—2[(“§) * O(T” Syt Pl
where <Pk,3(z) _ 3!(29—:‘11_)!3)![3';( Zw—(zz)k )/( Zw—(zz)k )// + (Zw—(zA;k )(Zw*(zz;))///] is analytic in
the neighborhood of z.
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For general v,2 < v < ¢, we have

- = (g+ 1) {(z—z;c
g+ L - o) Y w(z)

gt

T g4+ 1 — )W (2 )1

b+ (o™ Do)

).l +

1
_“_T’_E‘Pk,u(zk)r

z— 2z
I w w'(2x)

(2)

where ¢, ,(2) is analytic in the neighborhood of z;.. By (2.1) and Lemma 2, the proof of
Lemma 3 is completed.

Lemma 4 Suppose that ¥"(w) is continuous on |w| > 1 and f € B(D). Then the
Lagrange interpolation polynomial based on Fejér points

La(fi2) = 3 W(2)f(z)
k=1

uniformly converges to f(z) on D, i.e.
nlj—I.Bo |Zn(f2z) = f(z)|loc = 0.

Proof Step 1. Since ¥”(w) continues on |w| > 1, it follows that

$(w) = () + Y- )+ [ 9w - (24)

where the intergration path is along the straight line connecting w(|w| = 1) with u(Ju| > 1)
if Wu% does not intersect circle |w| = 1, otherwise, it is along the circular arc and exterior
part of wu. From (2.4) one has

[Y(w) — $(u) - ¥'(u)(w — u)| = O(jw - uf?).
It follows from Lemma 1 that

L W
w-—u P(w)— P(u)

Step 2. It is well known that for f € B(D), there is a polynomial P(z) such that
1f(z) - P(2)| <e.
Let A(z) = f(2) — P(z), so A(z) € B(D), and

| | < Bg, Bg — — — const. (2.5)

|A(2)] < €. (2.6)
Consider the Faber transformation

1o AR,

27 u—w
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which defines two functions ¢, (w) and p,(w) analytic in |w| < 1 and |w| > 1 respectively.
Under the assumption that 4”(w) continues on |w| > 1, one hasl®
1° ¢ (w) and ¢,(w) are continuous on jw| < 1 and |w| > 1 respectively, moreover

ler1(w)lle = OMIAlo0s  ([p2(w)lloc = O(1)][A[oos (2.7)
2° p1(w) € B(lw| < 1),p5(w) € B(lw| > 1); (2.8)
3% Alp(w)] = pr(w) — pa(w), |w] = 1. (2.9)

Step 3. Suppose z € T, and let n be large enough,
f(2) = La(f,2) =P(2) + O&(2) = Lo(P,2) — Lo(A, 2)
=A0(z) - Lu(A, 2)
(2) Z Az &

w(z)(z — z1)

=Aly(w ZAww I ) e

~1
(w wy,)

Y’ (ws) 1
P(w) —p(wr)  w— wy

=A[P(w)] - Z Alp(wy)]

w" -1

z": Altp(wi )] we[ ]

i, w wub (wi)(wn — 1) [, (w)
- k§;—l Alp(wy)] $(w) — B(w0) [Hn(wk) 1] (2.10)
where [],(w) = ﬁ ; : Z”k For brevity let Aly(w)] = A(w). Then

k=1
f(2) = Lu(f, 2) = pr(w) = 2(w) — La(p1, w) + La(p2,w) + B(D,w) + C(A,w) (2.11)

where B(A, w) and C(A, w) denote the last two terms in (2.10) respectively. We are going
to estimate every term in the right hand side of equality (2.11).
Since 1 € B(Jw| < 1), by virtue of Curtiss theorem(, for |w| = 1 one has

Jim |l (w) = Lo(e1, w)l| = 0. (2.12)

By virtue of (2.7)
g2l = O(1)e. (2.13)

By virtue of (2.5),
”B(A’w)llao = 0(1)5- (2.14)

Since J; D Ja, it follows that(5]
1
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and so
1

IC(8,w)lle = o(1) Oftan) o(z—) = o(1). (2.15)

It remains to prove that
ILn (P2, w)llo = O(e).

By similar argument in [3.p.22], Lemma 4 is proved.
Lemma 4 has improved the boundary condition of D in Theorem A and Theorem B.

3. The proofs of Theorem 1 and Theorem 2

Proof of Theorem 1 In Section 2 we have mentioned that for any ¢ > 0, there is a
polynomial such that

|£(2) = P(2)| <e.
Note A(z) = f(z) — P(z), then A\(z) € B(D) provided f € B(D, and

IAG)] < e. (3.1)
Taking n large enough, from Section 1 we have Hy(p,z) = P(z), thus
Fn(f,2) - f(2) =Fn(f,2) — Fn(P,z) + Fn(P,z) - Hn(P,z) + P(z) - f(2)
SFn(8,2) = 30 Y As(DPI(a) - Al2)

k=1j=1

=:I-1I-III (3.2)

Since p(z) is independent of n, pl¥)(z;) is uniformly bounded for k and j, from (2.3) there
is
g

111100 Smaxzz | Ak ()P ()| 2 —) -0, n — co. (3.3)

] 1k=1 :
Clearly, it is enough to estimate I.

Fn(A, 2) :zn:A 2)A(z) = i zw(z ytt Zaku (z — z )" O(zk)

k=1 k=1 v=0
(Z)Q+1

- Z zj: ()es, V - g )Iti—v Z Q- (3-4)

We show that ||@,|lx — 0,2 — 00, v =0,1,2,---,¢
Set v = 0 while ¢ > 0. By Lemma 3

n

NE

Qo ak,o(;:(%)q“A(zL Z o) q+l 2)TM0 ()7 A (2)
k=1 d L:l
= znj I(2)T 1 A(2). (3:5)
k=1
— 20 —
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If ¢ = 0, rewrite (3.5) as
Qo = Z’k JHA(2) = Lo(D, 2) = Az) + A(z). (3.6)

Since A(z) € B(D), from Lemma 4
[|Qoll> < 2¢, when n > ng.

If ¢ > 1, it follows from (3.5) and (2.2), that [[Qo|| < €. Thus when g > 0, one has
1Qoll — 0, when n - co. 3.7)

Set v = 1 while ¢ > 1, by applying Lemma 3, one has

= w(z)?tt
Z gy A(zk)

H

k=1 Z-—ZL)
A w'(z )[‘%J“ ln — ) (2)70 (21) w(2) D21
k=1
1)w(z) zn: %IL( N(z) + (¢ + 1w Zlk (2)2A(2)0 h;")
k=1
A+ B.

We estimate A as follows. When ¢ = 1, write

n

A=(g+ 1w Z - zk (2)72(z)

- (—I—g—lw(z)[Ln(A,z) ~ A(2) + A(2)].

From (2.1) and Lemma 4, one has
I|Al]x. = O(1)e, when n > n;.

If ¢ > 2, from (2.2) and (2.1),

n

1Al = lI(g + 1)( ——)w Z (2)28(21)lle = O(e).

When ¢ = 1, we have

Bl = O(22)0(n n)e = (L),
when ¢ > 2,
1]l = 0()e0(™0) = co(22).
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Thus, when ¢ > 1, we have
1Q1llx — 0,7 — co.

Similarly, consider v: 2 < v < ¢

n w(z)at?
Q=3 anu 2 s )
n 1 I n
- Z vi(g ++1 —) vl w! (ZL)I"“ Al %)V t O(En_)H
J(Zk)lﬁgw,u(%)}W(Z)"lk(z)q+l_"w'(z - k)Y A(z)
1 n
=) (q++1 )] Z el —%V’k(z)"“‘” ()T Aze)+
v (q+1)| = 1 qlul q+1-v Inn
vl(g+1—v)! ?—_-_:1 w/(Zk)q+l—ulL'(z) ¥ (26)""1 7 Az )O(T)'*'
W(Z)sz DTTk)lmV’k,v(zk)lk(Z)"“""w'(Zk)"H_"A(Zk)
=: A, +—B., + C.,.
Consider
A, = (—*) w(z )";T(-—T—— Z h(2)91 Y A(z),

When ¢ + 1 — v = 1, from (2.1) and Lemma 4

ol =5 et 08,2) - 56) + G

=0(¢), n > n,.

When ¢ + 1~ v > 2, from (2.1) and (2.2,

|Au]|co = O(1)e.
Consider
Buzw(z)" q+1~y)|zl q+1 Y A(z )0( )
Bl - O(YILn(27) ~ A(2) + AN = O(ED), g41-v=1,
(I)EO(Mn)-eO(thn), dil-u>2.
Finally,

=w ), w, e A ),

k=1
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o(})o(nn)e = e0(™™), g+1-v=1,
ICu |l = » n
O(;)E, q+1—u22

By summarizing the above argument, it follows that
1Qullc = 0,n — 00,2 <w < g. (3.9)
Combining (3.4) with (3.7), (3.8) and (3.9), we have
I1EN(D, 2)||e — 0, n — o0, (3.10)
From (3.1), (3.2), (3.3) and (3.10), Theorem 1 is proved.

Proof of Theorem 2 Suppose P(z) satisfies the conditions in Theorem 1.
f(z) = An(f,2) = f(2) = P(2) + P(2) ~ ﬁN(f, )
:A( ) FNAZ -}-ZZAk P(J Zk)

k=1j=1

i Xq:Ak,j(Z)aLj)- (3.11)

k=1 j=1

Since PU)(z;) are uniformly bounded with respect to k and j, it follows from (2.3) that

1303 Aui(2)P9(2) Zo )= 0,n — 0.

k=1 ;=1

From (2.3) and (1.1),

I3 Acj(2)afllx = o(1),n — 0.

k=1j=1

By considering (3.1) and (3.10), Theorem 2 is proved.
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SR PEH Fejer FEEN—BUWATE

B X R B
(UK BT R LER, FR XM 450045)

W OB XS IR Jordan KM D MEH f € B(D), W T T Fejér
REB Fejér FAEMA—HBNATFAHRMRE f(:) T D £ A CPHRERIRE
TREEMNEE.
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