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1. Introduction

A graph G consists of a vertex set V(G) and an edge set E(G) such that each edge
is assigned either one or two vertices as its ends. A graph is said to be simple if no edge
has only one end vertex and no two edges have identical end vertices. We only deal with
graphs whose vertex and edge sets are finite. A plane graph is a particular drawing of
a graph in the Euclidean plane using smooth curves that cross each other only at the
vertices of the graph. A graph that has at least one such drawings is called planar.

A walk of length £ in a graph G is a sequence vye, vy - - - €,v,, where vy, vy, ..., v, are
vertices of G, ey, e3,..., e, are edges of G, and v;_; and v; are the ends of e; for 1 < i < {£.
A circuit is a walk without repeated edges such that vy = v,. A cycle is a circuit without
repeated vertices.

By a polyhedron, we mean a convex 3-dimensional polytope P. The vertices and the
edges of P form a simple, plane, and 3-connected graph. We use P to denote both the
polyhedron and its graph (the skeleton). A polyhedron P is called semiregularif the faces of
P are regular and the group of symmetries of P acts transitively on the vertices of P. The
semiregular polyhedra include the 5 well-known Platonic solids, 13 Archimedean solids,
and two infinite families of prisms and antiprisms. Let uy,us,...,u,, and vy,vs,...,0m
be two concentric cycles in the plane. A prism Prism,, is formed when every u; is joined
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to v; by an edge. On the other hand, an antiprism APrism,, is formed when the cycle
U1, V2, Uz, V3, ..., VUm, Um, V1, U1 is added.

The v-vector (...,v;,...) of a polyhedron enumerates the numbers v;’s of vertices of
degree i. A polyhedron is said to be simple when every entry of its v-vector is equal to 3.
The p-vector (...,p;,...) of a polyhedron enumerates the numbers p;’s of faces having i
sides. A face having ¢ sides is also called an i-face.

The main objects studied in this paper are so-called octahedrites, i.e., 4-valent polyhe-
dra with only 3-faces and 4-faces. The edge set of an octahedron can be partitioned into
central circuits. We are interested in the distribution of lengths and frequencies of inter-
section of these circuits. We also study the effects on octahedrites when central circuits
are added or removed from them.

Closely related to octahedrites are families of iterated elongations of prisms, antiprisms,
pyramids, and bipyramids. We study their edge-partitions into central circuits and their
configurations for 3-faces.

Central circuits can be defined for any plane drawing of an Eulerian graph, not neces-
sarily planar. So-called Petri circuits that traverse in “left-right” manner can also defined.
In the final section, Petri circuits for fullerenes, i.e., 3-valent polyhedra with only 5-faces
and 6-faces, are discussed. A question of Griinbaum is answered; namely, the combinato-
rial type of a simple 3-polytope is not determined by its vector enumerating the numbers
of i-faces and its vector enumerating the numbers of Petri circuits of length <.

2. Central circuits

The following is a systematic way of drawing connected 4-regular plane graphs, C{P
graphs for short. We start out by drawing a closed smooth curve. Each time the curve
crosses itself, the point of intersection is regarded as a vertex of the graph to be constructed.
In the subsequent stages, closed smooth curves are laid out one by one so that the tracing
of a new curve satisfies the following conditions.

(i) It does not pass through any existent vertex of the graph.

(ii) It is required to cross a curve once it meets that curve and every crossing creates
a new vertex of the graph.

(iii) It must cross one of the curves that have already been laid out.

After finitely many stages, a C4P graph is constructed.

The above procedure can be reversed such that any C4P graph is decomposable into
the constituent circuits. For this purpose, we introduce the notion of a central circuit.
Let G be a C4P graph. Suppose that the vertex v is an end of a non-loop edge e. Then
rotating e clockwise around v, we successively encounter three adjacent edges of e that
are called, respectively, the left, the opposite, and the right neighbor of e. A walk C of G
is called a Petri walk (cf. [6], page 258) if in tracing the walk we alternately select as next
edge the left neighbor and the right neighbor. A circuit C of G is called a central circuit
if every edge of C is the opposite neighbor of its preceding edge. Once an edge of G is
chosen, the tracing of successive opposite edges are uniquely determined. We also note
that the construction of the previous paragraph is a successive addition of central circuits.
Consequently, we have the following.
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Fact

The edge set of a C4P graph G can be decomposed into central circuits in a unique
way. Furthermore, if we construct a C4P graph G by successively adding central circuits,
then the decomposition of G into central circuits will produce exactly the original circuits.

Central circuits were previously known as geodesics ([7]), straight ahead ([10]), or trans-
verse ([5]) circuits. An edge partition described in the above theorem is also called a
CC-partition for short. Actually, the number of central circuits in a CC-partition is in-
dependent of the plane embedding of a connected 4-regular planar graph ([12]). For a
C4P graph G of order n, its CC-vector CC(G) = (...,a?‘,...;...,b?’,...) is such that

..,@i,...and ..., b;,... are increasing sequences of lengths of all its central circuits, with-
out and with self-intersection, respectively, and a; and ; are their multiplicities. Clearly,
Yiaioi + Y 08; = 2n. Let r = r(G) denote 3>, a; + 3°; B, ie., the total number of
central circuits. Each of a; and b; is even if r > 2, because any two different circuits
intersect even number of times; if » = 1, then unique circuit has length 2n.

For a central circuit C, its intersection vector Int(C) := (co;...,c}*,...) is such that ¢
is the number of self-intersections of C and (..., ck,...) is a decreasing sequence of sizes
of its intersection with the other » — 1 circuits, with v, denoting respective multiplicities.

We call a C4P graph G balanced if all its central circuits of the same length have
identical intersection vectors. Any oc, with n < 21 is balanced. But Nr. 22-1 with CC-
vector (8%,12) is not balanced: two its disjoint 8-cycles have intersection vector (0; 4,22, 0)
(4 common vertices with the 12-cycle), while two remaining 8-cycles have it (0;24).

For a balanced G, we call it equilinked if all its central circuits have the same length.

A C4P graph is called pure if its CC-partition consists of only cycles. For example,
the graph of an octahedron. A C4P graph is called a Gaussian graph if its CC-partition
consists of only one circuit. Clearly, this unique central circuit is an Eulerian trail, i.e.,
a closed walk containing every edge exactly once. Note that a C4P graph may admit
Eulerian trails that are not CC-partitions. The smallest example of a Gaussian graph is
the antiprism APrismy.

A link diagram is called alternating if an over-crossing and an under-crossing appear
alternately as the arcs of the link are traversed. When we trace a central circuit of a C4P
graph, we alternately designate each passing of vertices as “over” and “under”. It can be
proved ([14]) that this gives rise to an alternating link. Hence Gaussian graphs will also
be called knot graphs.

3. Medial graphs

For a connected plane graph G, we denote its planar dual graph by G*. The medial
graph Med(G) of G is defined as follows. Place a vertex on every edge of G. Join two new
vertices representing edges e; and e; by an edge if they are incident in G and they lie on
the boundary of the same face of G. Two parallel edges of G determine two parallel edges
in Med(G). The medial graph of G is a subgraph of its line graph L(G). For a 3-regular
plane graph, they are the same. We also see that Med(G) = Med(G™) for any plane graph
G. We call (Med(G))* the radial graph of G and denote it by Rad(G). The dual graph
of a C4P graph is bipartite. Thus Med(G) is a C4P graph and the radial graph of G is
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bipartite.

Conversely, any C4P graph H is the medial of some connected plane graph. The faces
of H can be colored with 2 colors. An associated graph H' is defined as follows. Place
a vertex in every face of H of a same color. Join two new vertices representing faces f;
and f, by an edge through every vertex of H belonging to f; N fo. It is easy to see that
H = Med(H').

Let G be a C4P graph and C be a Petri circuit. The vertices of Med(G) corresponding
to edges of C form a central circuit of Med(G).

Theorem 1 For any C4P graph G, there is a C4P graph G’ such that G = Med(G’).
Furthermore, a CC-edge-partition of G gives rise to an double edge-covering of G’ by Petri
circuits.

Note that Nrs. 12-1, 12-2 of Figure 1 (the cuboctahedron and its twist) have the same
v-, p- and CC-vectors, but they have different vectors of lengths of Petri circuits: (8)
and (18, 30), respectively. Also, they are medials for two very different polyhedra: the
octahedron (or the cube) and, respectively, self-dual 7-vertex polyhedron with v = (v3 =
4 = p3,v3=3=pg) =p.

For a polyhedron P, Med(P) is defined to be the convex hull of the mid-points of all
edges of P. If P* denotes the polyhedron dual to P, then the skeleton of Med(P) is the
medial graph of the skeleton of P.

Theorem 2 The Med(G), where G is the skeleton of any Platonic or semiregular poly-
hedron, has balanced C4P graph.

Above fact is proved by direct computation, given in Table 1 below.

So, in view of Theorem 1, five Platonic solids, the cuboctahedron, the icosidodecahe-
dron and their duals are only finite edge-transitive polyhedra having double edge-covering
by elementary Petri circuits, i.e. their medials are pure. Permitting locally-finite infinite
planar 3-connected graphs, [8] show that other such graphs are only three regular parti-
tions of Euclidean plane, the Kagome partition (Archimedean partition (3.6.3.6)), its dual
[3.6.3.6] and several infinities of partitions of the hyperbolic plane.

4. Operations on octahedrites

By an octahedrite, denoted oc,,, we mean any 4-valent polyhedron with n vertices that
possesses only 3-faces and 4-faces. Such polyhedra are so named because the octahedron
is the smallest member ocg of the family. Other small examples include ocg = APrismy,
and ocg is the smallest convex 4-valent polyhedron with odd number of vertices. Note that
the medial graph of an oc, is an ocs,,.

Let p; denotes the number of i-faces. It is well-known that the p-vector of any 4-valent
polyhedron satisfies p3 = 8 + 3_;_s(¢ — 4)p;. The Euler’s equation n — 2n + (p3 + p4) = 2
implies that p; = 8 and n = py + 6. It is proved in (7], see also page 282 of [6] that an oc,
exists if and only if n = 6 or n > 8.

The family of octahedrites is unique case of k-valent, k > 3, polyhedra with only a-
and b-faces, for which p, is fixed for given (k,b). For 3-valent polyhedra, there are 3 such
cases, all with b = 6 and (a,p,) = (5,12),(4,6),(3,4); the first of them is well-known
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family of fullerenes (see last Section below).

[11] computed the number of octahedrites oc,, for all n < 50: 18972. Itis 1,0,1, 1, 2,
1,5, 2, 8,5, 12, 8, 25, 13, 30, 23, 51, 33, 76, 51, 109, 78, 144, 106, 218 for n = 6, ...,30 and
150, 274, 212, 382, 279, 499, 366, 650, 493, 815, 623, 1083, 800, 1305, 1020, 1653, 1261,
2045, 1554, 2505 for n = 31, ...,50.

Let fi, f2,..., fm be a sequence of distinct faces of an octahedrite such that every pair
fi and f;;1 are adjacent, where the indices are taken modulo m. We also require f; be
adjacent to f;_1 and fi+1 on opposite edges if f; is a 4-face. Such a ring of faces is called
zonal. An operation called an m-cutting is defined as follows. Suppose that f, fa,..., fin
is a zonal ring. We add a new vertex v; to the common boundary of f; and fi;1, then we
connect all new vertices by a cycle vq,v,,...,v,. This operation produces an oc,, 4, from
an oc,, so that all central circuits are preserved and one new central m-cycle is added. For
example, Nrs. 12-1, 12-2 and 14-2 are, respectively, 6-, 6- and 8-cutting of the octahedron
ocg. Here and below, the examples are from Figure 1.

When a zonal ring consists entirely of 4-faces, an m-cutting is called an m-elongation.
We could also view this operation as inserting a zonal ring of m 4-faces along a central
m-cycle. For example, the elongated bipyramid BPyr;"H, which is an ocsmye, is a 4-
elongation of the octahedron ocg iterated m + 1 times. Also Nr. 22-1 is an 8-elongation
of Nr. 14-2.

Suppose in a given octahedrite there is a 3-face f that is adjacent only to 3-faces.
We insert a new vertex in each edge of f and connect them to form a 3-cycle. We can
iterate this operation to each newly created 3-cycle. After m times of iteration, the final
product is called the 3-decoration of the original octahedrite The set of such octahedrites
is preserved under this iteration operation. It contains an oc,, for any n = 0 (mod 3),
actually the 3-decorations of the octahedron, i.e. APrismj'.

Claim 3 A 3-decoration of any octahedrite oc,, is APrism¥ with k = m + 3

In fact, if there is a 3-face in an oc,, adjacent only to 3-faces, then it is easy to see
that each of those 3 faces is, either adjacent to 3-faces only (and so our oc,, is the graph of
the octahedron), or adjacent to two 4-faces. In the second case delete the original interior
3-face and the proof proceeds by induction.

Suppose in a given octahedrite there is a 4-face f that is adjacent only to 3-faces.
We insert a new vertex in each edge of f and connect them to form a 4-cycle. We can
iterate this operation to each newly created 4-cycle. After m times of iteration, the final
product is called the 4-decoration of the original octahedrite. The set of such octahedrites
is preserved under this iteration operation. It contains an oc,, n > 8, for any n = 0,1,3

(mod 4), actually the 4-decorations of ocg (i.e. of APrism;"“), of ocg, of ocy;, and of
the cuboctahedron.

5. CC-partitions for octahedrites

Let Cy,...,C, be all central circuits of a given pure octahedrite. Since all circuits do
not have self-intersections, 2n = 37, ;. |Ci] = ¥16;,<, [CiUC;| = 230, ;i 1Ci U Cj.
Thus n is a sum of the even numbers |C; U C;| and we have the following.
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Claim 4 The number n of vertices of any pure octahedrite oc,, is even.

An equilinked polyhedron with CC-vector (a”) and intersection vector (co;¢™ 1) pos-
sesses ra/2 vertices and a = co+c¢(r—1). Consequently, n is odd if and only if r is odd and
a =2 (mod 4), both r and ¢y are odd. For example, we will show n = 45, r = ¢ = 3,
a = 30, and ¢ = 12 for APrism}.

A pure equilinked polyhedron is called r-uniform if it has CC-vector (a") and intersec-
tion vector (0;277!). So a = 2(r — 1) and the number of vertices is »(r — 1). Such an oc,
exists for r = 3,4,5, and 6: the octahedron, the cuboctahedron, and Nrs. 20-1, 30-1 of
Table 2; cf. last two with Nrs. 3 and 7 on Figure 2. Nr. 30-1, the icosidodecahedron and
its twist (regular-faced pentagonal orthobirotunda) have all three, the same CC-vector
(105) and the intersection vector (0;2°). The family of APrism]_, provides examples for
r-uniform equilinked polyhedron for any r.

The rhombicuboctahedron (see Nr 24-1 in Table 2) is an example of pure equilinked
octahedrite that is not r-uniform: its CC-vector consists of six 8-cycles so that each has
intersection vector (0;2¢,0).

The effect of an m-cutting on the CC-vector can be understood as follows. A new
central m-cycle is added and all other central circuits remain unchanged except that the
length of a central circuit is increased by one each time it intersects the new m-cycle. For
example, both, 6-elongation of the cuboctahedron and its twist, the Med(ocg), have the
CC-vector (62, 83).

Call an octahedrite irreducible if it is not an m-elongation of another octahedrite; call it
strongly irreducible if it is not an m-cutting of another octahedrite. Clearly, an irreducible
octahedrite has at most 24 central circuits since each circuit is incident to at least one
3-face.

Claim 54 Any irreducible pure octahedrite has at most six central circuits. The upper
bound is attained for Nr. 30-1.

Table 1 supplies more examples of 4-valent pure irreducible polyhedra with larger
number of central circuits.

In the row for Med(Prism,,) of Table 1, the symbol ¢ denotes the greatest common
divisor of 4 and m, m > 1, while Med(Prism, ) has the CC-vector (42) and the intersection
vector (1;2). In the last line, m > 2. Note that Med(Prism,) = Med(APrism,) is the
cuboctahedron and that Med(Prism,) is the ocg.

The numbers of all knot oc,, with 6 <n <21 are 0,0,1,1,0,0,2,1, 1,5, 6,1, 6,
6, 13, 7. There are six non-pure equilinked oc, with n < 21: APrismj, APrismj} (Nrs.
15-1, 20-2), and four equilinked oc,, (Nrs. 14-3, 18-1, 18-2, 20-3) are partitioned into two
central 3-circuits, with 3, 4, 4, 4 self-intersections, respectively (but two central circuits of
Nr. 20-3 are not equal). There are 10 other oc,, with n < 21 having only self-intersecting
central circuits, including Nr. 17-2 and one with three different sizes of central circuits.

For octahedrites of highest possible symmetry, [4] gives the following.

Theorem 6 Any octahedrite oc,, with symmetry Oy, can be obtained from the octahedron
or cuboctahedron by replacing each central circuit by the same number a > 1 of parallel
ones (i.e. a — 1 “rail-roads”).

So, clearly, Oj-octahedrites are pure and balanced. More exactly, they have n =
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6a?,12a2, CC-vectors (4a®),(6a%*) and intersection vectors (0;22%,0°71), (0;23,0°"1),
respectively.

Note that Med’ (tetrahedron), defined as i times iterated operation of taking of the
medial, starting from the regular tetrahedron (cf. Table 1) is Oy — oc, with n = 3 x 2,
i > 1. It corresponds, for odd 7, to a = 27 of the case n = 6a? above, and for even i, to
a =27 of the case n = 12a? above. Med:(icosahedron) is a 15 x 2'-vertex I;-polyhedron
with p-vector (p3 = 20,p4 = 15(2° — 2),ps = 12), i > 1, and its CC-vector can be found
similarly.

In fact, [4] characterizes also more general variety of all octahedrites with octahedral
symmetry, i.e. Oy or O; they have 6(a® + b*) vertices and cases b = 0,a correspond to
the symmetry Op. The smallest chiral one is Nr. 30-1 ((a,b)=(2,1)); consider also, for
example, oc7s(0) ((a,b)=(3,2)) and oc1s6 ((a,b)=(5,1)). Corresponding CC-vectors are
(10°), (52%), (78%) and the intersection vector for each central circuit is (0;2°), (8;182),
(9;203), respectively. The deletion of all but one central circuit in those oc7g(0) and
oc156(0) reduces them to ocg and ocg, respectively.

6. Prismatic polyhedra

We consider the following families of polyhedra:

Prism® : a Prism,, elongated (k—1) times (i.e., a column of k m-prisms having skeleton
Cm X Pk+l);

Pyr¥ : an m-pyramid elongated (k — 1) times (the apex has degree m);

BPyr* : an m-bipyramid elongated (k — 1) times (the apexes have degree m);

APrism’®, is a “column of k m-antiprisms”, defined by APrism2!~*:=Med(Pyr? ) and
APrism??:=Med(BPyr? ) = Med(Prism? ).

It is clear that (Prism® )* = BPyrt,, (Pyrk)* = Pyr* ; also, BPyrs is an ocsr42 and
APrismﬁ1 is an ocp(r41) for m = 3 and 4. In fact, APrism,kn has m(k + 1) vertices and
2m 3-faces, m(k — 1) 4-faces, two m-faces; APrism§ is an oca(k41) of the symmetry (for
k > 2) D3q and APrismﬁ' is an ocy(r11) of symmetry D4y for odd k and of symmetry Dap
for even k > 2.

All APrism{ and APrism§ with k = 0,1,3 (mod 4) are irreducible. However, in an
APrismﬁ with £ = 2 (mod 4), the deletion of any of four central cycles produces an
APrism’, where £ = (3k — 2)/4.

Theorem 7 (i) Any APrism’, is an equilinked polyhedron with the CC-vector ((2m(k
+1)/t)!) and the intersection vector (m(k + 2 — t)/t%;(2m(k + 2)/t*)'"1), where t =
ged(m, k + 2).

(ii) The CC-vector of BPyr*, with even m is (mF,(2k + 2)™/?) with the intersection
vectors (0; 2™/2,0%1) (0; 2k—1+m/2),

The cases k = 1 and 2 in (i) were given, essentially, as Theorems 3, 4 in [5]. (In fact,
considered in those Theorems were graphs with cyclically ordered vertices vy,...,v, and
edges (v;,v;) for all 7 and j = 7 4+ 1,7 + 2 (addition modulo n). Clearly, any such graph is
the skeleton of APrism,,, if n is even. Otherwise, this 4-regular graph is not planar, yet
when drawn in the plane with vertices on a circle and chords (v;,v;42) as edges it has the
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same CC-partition as APrism,.
7. Face-regular and embeddable octahedrites

An octahedrite is called face-regular if either every 3-face is adjacent to exactly i3
3-faces or every 4-face is adjacent to exactly ty 4-face, where both t3 and t4 are fixed
numbers. See [2], [3] for more on face-regular polyhedra with two types of faces, including
part of following theorem.

Theorem 8 Except two infinite families satisfying t3 = 0 or t3 = 1, all face-regular
octahedrites are listed in Table 2.

A complete description of all oc, with t3 = 0 seems difficult. We can give a few
examples: any medial of an oc,, is such an ocs,, and APrismj* for any m > 2. In fact, all
oc,, with t3 = 0 and n < 21 are Nrs. 12-1, 16-1, 16-3, 20-1, 20-2 and two with n = 18.

There are also infinitely many octahedrites with ¢t3 = 1. For example, those oc, with
n = 8s + 14 and 6s + 16. They are derived as 8- or 6-elongations of Nrs. 14-2 and 16-2
iterated s times. All oc,, with t3 = 1 and n < 21 are Nrs. 14-2, 14-3, 16-2, 16-4, 18-1, one
more with n = 18 and one with n = 20.

The case of t3 = 2 is much simpler.

Claim 9 The only polyhedra oc,, with t3 = 2 are either APrismy or the family B Pyry,
m > 2.

Proof Let T; be a 3-face in an oc,, with t3 = 2. Then Ty is adjacent to two 3-faces T
and T3. These 3-faces are adjacent to other 3-faces. There are two cases: T and T3 do
or do not have a common adjacent 3-face. In the first case, we obtain a configuration of
four 3-faces surrounded by four 4-faces. This configuration generates the family BPyrg'.
In the second case, we can only obtain APrismy. O

A well-known metric space on the vertices of a polyhedron P can be defined in terms
of the shortest-path metric on its skeleton. Then P is said to be embeddable if this metric
space can be embedded isometrically into a hypercube H,, or into a half-hypercube %Hm.
‘See [3] and references there for more on embeddability of polyhedra. All octahedrites or
their duals, that are known to be embeddable, are indicated in the last two columns of
Table 2.

Figure 1 includes all oc, with n < 13 and selected ones for larger n, such as all
Gaussian ones with n < 15, all pure ones with n < 17, all equilinked (but non-pure and
non-Gaussian) ones with n < 21, and all those listed in Table 2. Note that the symmetry
group of the first nine octahedrites (Nrs. 6 to 30-1) of Table 2 (see also Figure 1) has
exactly two orbits on faces, for all but Nrs. 14-3 and 22-1. For each item P, Figure 1
indicates the number of vertices, CC-vector and the order of the symmetry group Sym(P).
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Nr.16-2 (6%.8) Nr.16-3 (32) Nr.16-4 (62,20 Nr.17-1 (34)
Groupsize: 16 Groupsize: 16 Groupsize: 4 Groupsize: 4
Nr.17-2 (10, 24) Nr.18-1 (18, 18) Nr.18-2 (18, 18) Nr.20-1 (8%)
Groupsize: 4 Groupsize: 8 Groupsize: 2 Groupsize: 8
Nr.20-2 (20, 20) Nr.20-3 (20, 20) Nr.22-1 (84, 12) Nr.30-1 (10%)
Groupsize: 16 Groupsize: 1 Groupsize: 8 Groupsize: 24
Figure 1: Small octabedrites
Nr.1 (20) Nr.2 (30) Nr.3 (8%) Nr4 (6, 10)
Group: Dsq Group: Dsp, Group: Dsg Group: Dsy,
(ts .15 )=(2,0) (ts ta,t5)=(0,0,0)  (f3,ta,t5)0,2,0)  (f3,4s,85)~0,1,0)
Nr.5 (10,30) Nr6 (4¢,82,12) Nr.7 (109) Nr8 (45,123)
Group: Dsq Group: Dy Group: I, Group: Op
(b te 15)=(0,0,0)  (f3,5)=(2,2) (t3,15)=(0, 0) (f3, 16 )=(2,3)

Figure 2: Some other face-regular 4-valent polyhedra
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8. Fullerenes with pure medials

A graph G is called Eulerian if there is a closed walk traversing every edge of G exactly
once. It is a well-known fact that a graph is Eulerian if and only if it is connected and
every vertex has even degree. Let G be a plane drawing of an Eulerian graph. We do
not require G to be planar, so edges may have extra crossings. To avoid trivialities, we
assume that the degree of every vertex is at least 4. Then all edges adjacent to a vertex
z can be enumerated in the clockwise direction as ey, egz,...,e; where k is the degree of
z in G. (A self-loop is enumerated twice.) For any edge e;, 1 < i < k, the edges €;,1,
ei-1, and e(z;4k)/2 are called, respectively, the left, the right, and the opposite neighbor of
e; (addition modulo k).

A circuit C of G is called a Petri circuit if in tracing the circuit we alternately select
as next edge the left neighbor and the right neighbor. A circuit C of G is called a central
circuit if every edge of C is the opposite neighbor of its preceding edge.

The concept of a CC-partition can be generalized naturally to plane drawings of Eule-
rian graphs. For example, a certain drawing of the 4-dimensional hypercube K3 = C4 x C;4
has a CC-partition into two circuits, each is of length 16 and is Hamiltonian.

Figure 3: A CC-partition for the 4-dimensional hypercube

Actually, Petri circuits can be defined for any drawing of a graph G in the plane with
extra crossings permitted. Then all Petri circuits of G form a covering of the edge set of
G.

We call this covering the Petri covering. Since once a Petri circuit begins with an edge
in one of the two directions it extends in a unique way. Hence each edge is covered twice
by the Petri covering (see Theorem 1 above).

A simple polyhedron having only 5-faces and 6-faces is called a fullerene. Brinkmann
in [1] computed all fullerenes P with at most 200 vertices, such their Petri circuits (and
so, central circuits of Med(P)) are cycles. Table 3 is obtained by exploring his data. In
column 5 the intersection vectors of Petri circuits are exhibited only if there are at most
two different ones amongst them. In the first three cases not exhibited, i.e., Nrs. 603, 72;



and 80,, there are three different intersection vectors: (0;4,2%), (0;2°), (0; 28,0); (0; 4, 2°),
(0;219), (0;2°,0); (0;21), (0;2°,0), (0;2°, 2%), respectively.

In column 3, the numbers t5 (and/or ts) appear if any 5-face (respectively, 6-face) of
fullerene P is adjacent to exactly t5 5-faces (respectively, tg 6-faces), i.e. if P is face-regular
(see previous Section). Last two columns are about embedding of P and/or P* (cf. Table
2). All four known fullerenes P with embeddable P* appear there.

Claim 3 implies that any n-vertex fullerene P with Med(P) being pure, has n = 0

(mod 4), since Med(P) has 2 vertices and their number should be even. On the other
hand, such fullerene exists for any n < 220,n =0 (mod 4), except n=24,32,40,52,64,96,
and supposed to exist for any n > 100,n =0 (mod 4).

The fullerenes with pure medials are not necessarily of high symmetry. For example,
T;-fullerenes with 40 and 76 vertices are not in this list. Fullerenes P = 843 and 100, have
Sym(P) of order 2 and, respectively, 42 and 57 orbit of vertices. Starting with 188 vertices,
appear fullerenes with trivial symmetry. But any fullerene with the highest symmetry I,
has pure medial. It is well-known that all fullerenes P with full icosahedral symmetry
I, have 20a® or 60a’ vertices, where a is any natural number. It was shown in [4] that
Med(P) has, for any Ij-fullerene, CC-vectors (10a%*), (18a!°*) and intersection vectors
(0; 2%, 0%1), (0;29,0°"1), respectively.

Note that [9] consider another way to get 4-regular graphs (and so, alternating links)
from fullerenes: fix an edge-coloring and consider colored edges as digons.

Remind that a polyhedron is said to be simple, when every vertex has degree 3, and
its p-vector (..., p;, ...) enumerate the numbers p; of its faces having ¢ sides. On page 296 of
[6] Griinbaum states, “No example is known to disprove the conjecture that the numbers
p;, together with the specification of the different types of closed Petri-curves and their
numbers, determine the combinatorial type of simple 3-polytopes”. The pairs (561, 565),
(604,602), (881, 882), (883, 884) and the triple (84;,84,,843) of fullerenes in Table 3 provide

examples to disprove above conjecture.

Table 1: CC-vectors of medial polyhedra of Platonic and semiregular polyhedra

| n | Polyhedron I CC-vector [ Int. vectors]
6 octahedron=Med(tetrahedron) (4°) (0;2%)
12 | cuboct.=Med(oct.)=Med(cube) (6%) (0;2%)
30 | icosido.=Med(ico.)=Med(dode.) (10°) (0;2%)
24 | rhombicub. =Med(cuboctahedron) (8°%) (0;2%,0)
60 rhombicosa. =Med(icosidode. ) (10'2) (0; 2%,0°)
48 Med(rhombicuboctahedron) (128) (0; 2%,0)
120 | Med(rhombicosidodecahedron) (201?) (0;21°,0)
72 Med(trunc. cuboctahedron) (18%) (0;6,2°)
180 | Med(trunc. icosidodecahedron) (301%) (0;10,21%)
18 Med(trunc. tetrahedron) (123) (0;6%)
36 Med(trunc. octahedron) (12°) (0;4,2%)
36 Med(truncated cube) (184) (0;63)
90 Med(trunc. icosahedron) (1819) (0;2°)
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90 | Med(trunc. dodecahedron) (30%) (0;6°)

60 Med(snub cube) (30%) (3;8%)

150 | Med(snub dodecahedron) (506) (5;8°%)

3m | Med(Prism,,) = APrism2, | (6m/t)t | (m(4 - t)/t*;(8m/t?)*"1)
4m Med(APrism,,),m # 3 (2m; 6m) (0; 2m), (2m; 2m)

Table 2: The face-regular (but for (t3,t4) = (1,-),(0, —) only minimal ones) and known
embeddable n-vertex octahedrites P =n — 1

| P |Sym(P)]|tsts| Polyhedron P | CC(P) | Emb. P | Emb. P~ |
6 On 3 BPyry = APrismg (4%) 1/2H, Hj
8 Dy 2,0 APrismy (16) 1/2Hy -
10-1 Dy, 2,2 BPyr? (4%,6%) 1/2Hs H,
12-1 On 0,0 | cuboct.=APrism? (6*) - Hy
14-1 Dy 2,3 BPyr} (4°,82) 1/2Hg Hy
14-2 Dyp, 1,2 cut. Nr.6 (62, 8%) - -
14-3 Dy 1,2 decor. {cuboct.)* (14, 14) - -
22-1 Dy 1,3 elong. Nr.14-2 (84,12) - -
30-1 o 0,3 cut. Nr.20-1 (10%) - -
9 D3q -0 APrism? (18) 1/2Hs -
102 | D, | -1 (6;14) 1/2H; -
12-2 Dgsp, -1 | tw. cuboctahedron (64) - -
12-3 Dsy -2 APrism3 (24) - -
124 | D, | -2 (24) - -
4m+2 | Dy, 2- BPyr,m > 4 (4™, (2m +2)%) | 1/2Hzmy2 | Hmyz
16-2 Dy 1,- | el 10-1=tw. 16-1 (6%,8) 1/2Hs -
16-4 D, 1,- elong. Nr. 10-2 (6% 20) 1/2Hs -
16-1 Dyq 0, | Med(Nr.8)=cut.Nr.8 (8;24) - -
16-3 Dy 0,- APrism3 (32) - -
20-1 Do 0,- cut. Nr.12-1 (8°) - -
24-1 On 0,~ | rhombicu.=el. 16-2 (8°) 1/2H -

Table 3: All n-vertex fullerenes P = n; with n < 116 and pure Med(P)

[P [Sym(P) [ ts,t6 | CC(med(P)) |

Int.vectors

| Emb. P ‘ Emb. P"‘J

20,
28,
36,
48,
56,
565
60,
60,
605
68,

I
Ty
Dgy,

5

(10°)
(127)
(145,12?)
(16°)
(184,16°)
(184,16°)
(181°)
(181)
(20%,18°,162)
(20°,188%)

(0;2°%)
(0;2°)
(0;27),(0;2°,0)
(0;2%)
(0;2%),(0;2,0)
(0;2°),(0;2%,0)
(0;2°)
(0;2%)

(0;219),(0;2°,0)

1/2Hy | 1/2Hs
- 1/2H+
- 1/2Hs
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72; | Co | -~ | (222,20°,18%) -
761 | Dag | 1,- (224,207) (0;4, 2%), (0; 219) -
80, | In |04 (20'%) (0;2°,0) 1/2H;
807 | Dag | 1,- | (223,20°,183%) -
84, | Den | 0~ (228,20°) (0;211),(0;2'°,0) -
84; | D3q | 0~ (22¢,20°) (0;211),(0;2'°,0) -
84; | C; | - (228,20°) (0;21),(0; 2, 0) -
844 | Doy | -~ | (242,222%,20%) -
845 | Can | —— | (24%,22°,202,18%) -
88; | T |0,- (221%) (0;211) -
882 | Don | - (22'2) (0;211) -
883 | Cow | —— | (24%,224,20%) -
884 | Co | —— | (24%,22%,20%) -
92, | Ty | 2, (244, 20°) (0; 212), (0; 2'°,02) -
92, | Tn | 1,- (245, 22%) (0;4,210),(0;21) -
100, | C3 | - (247,225) (0;2'%),(0; 2!, 0) -
100, | C, | —~ | (262,245,222 20°) -
104; | Cay | -~ | (26%,24°,22%) -
108, | D3q | 1,- | (26%,242,229) -
1082 | Dyg | 1,- (28,26%,24%) -
112, | Ty | 0~ (241%) (0;2'2,0) -
112, | Can | 0~ | (26%,243,229) -
1123 | D,y | -~ | (282,262,244, 226) -
1124 | Dy | -~ | (282,264,24%,20%) -
140, | I |05 (28'°) (0;21) -
180, | I |0, (30'8) (0;21%,02) -

Nr.112, (282,264, 24%, 20*)

Group: Dy

Nr.140, (303, 269, 24%)
Group: Diy
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Nr.28, (127) Nr.48, (16°)

Group: Ty Group: D
Nr.56, (184, 166) Nr.56, (184, 169%)
Group: T, Group: Dy
Nr.60, (1810) Nr.60, (1819)
Group: /), Group: D5
— 63 —
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®

Nr.68, (203, 18%) Nr.72, (222, 205, 18%)
Group: Ty Group: ('3,
Nr.76, (224,207) Nr.80; (20'%)

Group: Dyy Group: I,
Nr.84, (226, 206) Nr.84, (242, 222, 208)
Group: Dgy, Group: D>,

Figure 4: Some fullerenes from Table 3
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Michel Deza!, # KR % 4%3
(1. 2EERHSIEEER; 2. GBXHELXENHAY®E: 3. 6B PYRERREFEFRR)

W E XA\EGRTGERN 4 MEFISARS 4 AEMNESEE. XRHFRE
BNAER], PREAEEHEMXEEE, SBITILENM T RER. BRFEERM
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