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Abstract: This paper introduces some coucepts of conditional stability of stochastic
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1. Introduction

The theory of stochastic integration of processes which is not necessarily adapted has
been developed by many authors. It makes possible to investigate stochastic differen-
tial equations with anticipating coefficients. In particular, anticipating stochastic Volterra
differential equations have been discussed recently in [12] and {13]. Which have very impor-
tant application in finance theory, see [5] and [6]. Clearly the problem is on the stochastic
integrals which are not adapted, and therefore one cannot use as usual the 1t6 integral to
interpret the equation. Hence the Skorohod integrals (cf.[14]) be used. On the other hand,
stability analysis of various kinds of non-anticipating stochastic differential equations have
been well studied, which is very important both in theory and in applications of stochastic
dynamic systems, see [1],[7],[8],[15],[16],{17) and [18]. However, as we know, the stability
problem has not been discussed for the anticipating stochastic equations. The aim of this
paper is to give a very beginning discussion of stability analysis to stochastic Volterra
equations with anticipating kernel:
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where z¢ € LI(Q, F, P; R?); F ¢ CY(R* R%) and G; € C*°(R? x R*,R%),i =1,2,---,k,
H, is a given p-dimensional progressively measurable process, and the last stochastic in-
tegral is in the Skorohod sense. The concept of conditional stability, conditional uniform
asymptotically stability and weak conditional exponential stability are introduced. Some
sufficient conditions of these types of stability are given.

1. Preliminaries

Let = C(Ry; R*) be equipped with the topology of uniform convergence on compact
subsets of Ry, F be the Borel field over 2, and P denote the standard Wiener measure
on (9, F), i.e., {Wi(w) = w(t),t > 0} is a standard (EW,W, = tI) Wiener process under
P. S denote the subset of L%({2) consisting of those random variables F which take the

form
F = f(W(h1)1 e 1W(h‘n))a

where n € N;hy,---,h, € H = L*(R;; R*); f € C{°(R"). Here

W(h) = /()“‘(h(t),dwg.

If F € S, then its gradient is defined by

; =, of ;
DJF = W(hy), -, W(h,))hl(t
: ; LAY (hn))h;(t)
DF will stand for the k-dimensional process {DF = (D} F,---,DF)";t > 0}.

It is known ( proposition 2.1 in [13]) that D?,j = 1,.--,k(resp.D) is a closable un-

bounded operator from a subset of L*(Q) into L*(Ry x Q) (resp. L%*(R4 x Q; R*)). We
identify D’ (resp.D) with its closed extension, and denote its domain by Djl-’z (resp.D1?).

It is easy to see that DP}? = ﬂle'D;‘z. DI

;7 and D12 are the closures of S with respect
to, respectively the norms

IFlljaz2 = |1 Fll2 + 1D Fll2 (g ll2

N
WFll12 = ([Fll2+ Y WD Flirzny)la-

i=1

More generally, we can define 'D}"’ and D'? similarly, the closures of § with respect to
the norms

1Fliao = WFllp + 111D? Flizea,)llp,

and
k

1Nl = 11Flly + DD Flizzay ) lps

i=1
respectively. And furthermore let DJZ-"' and D>? be the closures of S with respect, to

respectively the norms
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1Fll20 = 1Fllp + (1 D? D Fli 2z ) llp

and
k . .
HFll2p = IFIl+ 11 ) 1D* D Fl|2(p2 )llp-
i,j:]
Define
L = IP(Ry,dt; D)5 = 1, k1 = 1 or 2
and

LY = [P(Ry,dt; D), 1 =1 or 2.

The Skorohod integral (D’*, DomD7*) is defined as the adjoint of D7, i.e., it is the
closed unbounded linear operator from L*(R; x ) into L(§2) which is defined as follows:
(i) DomD?* is the set of those u € L?(R; x ) to which we can associate a constant
¢ such that : -
]E/ D} Fu,dt| < ¢||F|js,VF € S.
0

(ii) If w € DomD’*, D¥*(u) is the unique element of L2() which is such that

E[FD¥*(u)) = E] / " DIFwdt],VF € S.

0

We know that [3]1-‘2 C DomDi* and if u € E}'z then uly 4 € C;-'z, hence we can restrict
the operator D’ to E}'z, and define the Skorohod integral by

t . .
/ w,8W3 = DI*(uly, ).
to

We recall the anticipative It6 formula by Pardoux and the existence theorem which
will be needed. The proofs can be found in [12] and [13].

Theorem 2.1 Let V ¢ C#(R?)), zy be a d-dimensional random vector, A;, B}, -+, BF
be d-dimensional random processes such that

(1) z) € D145 =1,---,d;

(2) A € DY j =1, d;

(3) B € L£2P 1 =1,---,kandj=1,---,d, for some p > 4.
Let Xy = 2o + [} A,ds + [} Bi6W/;t > 0. Then

V(X,) = V(zo)+/( (X.), A,) ds+2/ ), BY§WI +

k t . )
33 [ ONVX), B, (2

where

t e 3 . .
ViX) = 2D{zo + 2 DJA ds + 2 DJB_’6W_,” + B,
t~s t

=1
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where ' ‘ ‘ . ‘ '
Dgx() = (Df:l:(lj, M) D‘Z.’BS), Di’A-" = (DiA:v T D:A?)’
D{B, = (D{B}",---,D{B}").
Theorem 2.2(12 Suppose there exists ¢ > p, B a bounded subset of R and K > 0 such

that: =, € LYQ,Fy, P;RY), H, € B,a.s.,%t > 0, H € (L*?);|D,H,| < Ka.s.,0 < 5 < t,
and increasing and Lipschitz conditions as follows

k e
|F ()| +Z’Gi(h1"’)| + _ZI an (el < K(1+]e))

and

k k . .
(&) = )|+ Y 1Gih,) - Gilhw)l + 301 (k) — T (h,y)] < Kz~
i=1 i=1

for 0 < s < t,h € B,z,y € R* Then the stochastic equations (1.1) has a unique
solution Xy in N>0LY, (2 x (to,t)), where L, (Q X (to,t)) stands for the space LY(§ x

(to,t), P, P x X), here P, denotes the o-field of progressively measurable subsets of Q x
(to,t) and X denotes the Lebesgue measure on (t,t).

2. Stability

Definition 3.1 Let X, denote any solution of (1.1). The equations (1.1) is said to be:
(i) conditionally stable, if for any ¢ > 0,t, € Ry, there exists a §(ty,e) > 0 such that

E[lth I }—]t().t]'] S £,a.8., Vi > t(),

whenever E[|zo] | Fjy, 4] < 6(t0,€),VYt > 0, here F,, y- denotes the o-field generated by
the increments of a standard Wiener process on R, —t,,t);

(ii) conditional uniformly stable, if the § above is independent of t;

(iii) conditional quasi-equi-asymptotically stable if, for any ¢ > 0,t, € R, there exist
6(to) > 0 and T(to,e) > 0 such that if E[[zo] | Fy, 4] < 8o(to), ¥Vt > ty + T(to,€), then

E[|Xi| | Pyl <€, as., forall t >ty + T(ty,e);

(iv) conditional quasi-uniformly-asymptotically stable if, both § and T in (iii) are
independent of t;
(v) conditional asymptotically stable, if it is conditional stable and if there exists a
60(to) > 0 such that
Ellzol | A1) < 80(to), ¥t > to,

implies E [IXA | ]-'],,”‘t]r} — 0 as. ast — oo.

(vi) conditional uniformly asymptotically stable, if it is conditional uniformly stable
and quasi-uniformly asymptotically stable.

Definition 3.2 Equations (1.1) is said to be conditional weak exponential stable , if for
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any solution X, to (1.1) there exists a wedge function X such that, given a constant K > 0,
there are constants §(K) > 0 and K' > 0, with

E[A(|th) | ]:]t”.g]r] S KC—KI(t—tO),a.S. Vt > tu,
whenever E[A(|zo|) | Fjy, 4] < 6(K),Vt > t,.

Theorem 3.3 Suppose the conditions in theorem 2.2 hold. Let X; be any solution of (1.1)
such that F(X,) € D'* and G;(H;, X,) € L>? for some p > 4. Moreover, assume that
there exists a Lyapunov function V € C? with bounded derivatives on {z € R* : [z| < M}
which is convex for each component z; (i = 1, --,d) and satisfies the following conditions:

() V(0) =0;

(ii) a(|z|)} < V(z), where a(t) is a continuous increasing and positive definite function
on R+,’

(iii) LV(X;) < 0, where the operator L is defined by

LV =

l\D]v—*

k : t .
Z (V"2Dlz, + 2V" t D{Fds + V"G,,G;). (1)
: 0

Then equations (1.1) is conditionally stable.

Proof Let X, = X,(ty,z,) denote any solution of (1.1). From the conditions of the
theorem, we can apply It6 formula to the functional V. Therefore

V)=V = [ V(. XHHZ/ (X.), G5 X.))Wi+
18t '
52/ (VAX NV’ X),, Gj(H,, X,))ds, @
where

(V'X), = 2D?2y + 2/ DI F(X,)du + 22 " DIGH(Hy, Xu)uW3 + G

i=1 vt

Taking conditional expectation on both sides of (3.2), we get
E[V(Xf) ‘ ffu ] - E[ (w“) l ffn f]]

t t .
= Bl LV(X.)| Fraplds + ZE[ (X2, Gi(Ho X)W | Fyy 4
0 4= 1 0
}\7 t " B4 . ) -
> B (V'(X) [ DiGM(Hu X)W, Gi(He, X))ds | Fiya)
ig=1 7t to
It is easy to see (cf. [10]) that for each j in the second term on the right hand side of last
equality, we have

B[ (V(X),GH X)W | Fg ) = 0d =1k (9)

to
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and for each ¢ and j in the last term, we have:
t " s . .
Elf v (Xs)/ DiG(H,, X,)6W?, G(Hy, X,))ds | Fig a1
to to

t " s . .
= [(B(V"(X.) [ DiGi(He X0)oW, Gj(He X)) | Fialds

to

t " t . .
- / E(V"(X.) | DIGi(H, X, )Yy WY, G3(He, X)) | Fiyrlds

to

t . t :
- [ B (x)) /t DiGi(Hy, X, )igy 01> G3(Her X)W | Fi gelds
0

to
¢ t , ;
- /t E([ (V" (X)DIGi(Hy XYLty i, G Hes X))SW] | Fiy ]
0 0
=0. (4.)
Therefore we have
t
BIV(X) | Fiy ] = BV (20) | Fipe) = B[ LV(X) | Filds (5)
0
Given any ¢ > 0, we have
a(e) < V{(z)
for z € R® such that |z| = ¢. For a fixed to € R,, since V is continuous, we can

choose a §(¢) > 0 such that |2| < § implies V(z) < a(e). Suppose equations (1.1) is
not conditionally stable, then there exists a solution z(t,to,zo) of (1.1) such that E[|z] |
Foggc]l < 6(to,¢€), for all t > to satisfies E[| Xy, | | Fy,)c] > € for some t;. By using
condition (iii), (3.5) and Jensen inequality, we have

a(e) < E[V(th) I ]:]to,h]‘] < E[V(:l?o) ' ‘Tjt().tl](] < V(E[il?() I ‘}-]to.t]‘]) < G(E) a.s.

because |Efzo | Fjg, gl < Ellzol | Fjgyyyc] < 8(to,€). This is a contradiction, hence we
complete the proof.

Remark From the proof of theorem 3.3, it is easy to see that the § above does not depend

on ty. Hence equations (1.1) is conditional uniform stable under the conditions of theorem
3.3.

Theorem 3.4 Suppose the conditions in theorem 2.2 hold. Let X, be any solution of (1.1)
such that F(X,) € D* (i.e. each component of F(X;) in D**) and G;(H, X,) € L2? (i.e.
each component of G;(H;, X,) in L>? for some p > 4. Moreover, assume that there exists
a Lyapunov function V € C? with bounded derivatives on {z € R? : |z| < M} which is
convex for each component z; (i = 1,---,d) and satisfies the following conditions:

(i) V(0)=0;

(if) a(lz]) < V(z) < b(|z|), where a(t) and b(t) are continuous increasing positive
definite functions on R, and a(t) is convex;

(iii) LV (z) < —¢(|z|), where c(t) is a continuous function on the interval [0, M] and
is positive definite.
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Then the equations (1.1) is conditional uniformly asymptotically stable.

Proof By theorem 3.3 and its remark we know that equations (1.1) is conditional uni-
formly stable, and hence, there exists a §o > 0, such that if o € Ry and E[[zo] | Fjs, 4] <
8o, Yt > tg, then

E(|Xi] | Fo el < M as., VE>to.

Moreover, from the conditional stability of equations (1.1), for any € > 0(¢ < M) there
exists a §(¢) > 0 such that for to € Ry and Efjzo| | Fye, 4] < 6(€),VE > to

E[Ith If.]t(),t]c] <€ a..S., Vt > t().

It will be shown that any solution X;(to,2o) of (1.1) such that ¢, € Ry, Ellzo| | Figy 4] <
80, Vt > to implies E[|X;,| | Fjee,c] < 6(¢) a.s. at some ¢; > fo. Suppose it is not true,
then for all £t > ¢,

§(¢) < BUXil | Fip] < M.

From condition (iii) and (3.5) , there exist ay > 0
BV (Xu{to,70) | Fioge] € BIV(20) | Foee] - 7(t — t0) as.
Ift >4+ T, T = [b(o) — a(6)]/7, since
EV(z0) | Fitg.e1c] < b(b0),

we have

E[V(zo) | Feogel = 7(t = to) < a(8) as..

Hence
E[V(X4(to, o) | Fieo 4] < a($)

which contradicts
E[V(Xt(t(),m()) | ‘ﬁtg,t]‘] Z a(&) a.s..

Thus, at some t; such that to < t; <ty + T, we have
E[| X, | ] ]:]tn.tn]‘] < &(e) as..
Therefore, if £ > ty + T, we have
E[|Xe | | Fgne) <

where T only depends on ¢, i.e. the equations (1.1) is conditional quasi-uniformly asymp-
totically stable. Thus, by definition the proof is completed.

Theorem 3.5 Suppose the conditions in theorem 2.2 hold. Let X, be any solution of (1.1)
such that F(X,) € D'* (i.e. each component of F(X;) in D**) and Gi(H;, X,) € L*? (i.e.
each component of G;(Hy;, X,) in L*P for some p > 4. Moreover, assume that there exists
a functional V € C}(R?; R.) and a wedge function A € Co(Ry; Ry} (cf[16]) such that

Alz]) < V(z) < ka1 A(Jz]) (6)
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and
LV (z) < —kaA(|2]). (7)

Then the equations (1.1) is conditional weak exponential stable.

Proof Let X; = X,(to,20) denote any solution of (1.1). From the conditions of the
theorem, we can apply Ité formula to the functional V. Therefore

t koo .
V(X:) — V(20) :[ (VI(X.,),F(X,,))ds + Z/; (VI(Xa),Gj(Ht,Xs))6Wg+
Z )(VIX),, Gj(Hy, X,))ds.

Taking conditional expectation on both sides of (3.8), we get

E[V(X:) | -7:]to,t] ]~ E[V(z0) | ]:to A< e]

t .
= B[ LV(X,)| Fypqlds + ZE / ) G He, X))SW3 | Fyp e+
Z E[/ 3)./t DiGi(H,, X,)§Wi,G;(Hy, X,))ds | Fiey 1)
1,7=1 0

From (3.3) and (3.4), we have

t . ] '
E[| (V(X,),G(Hy, X,))6W7 | Flyp e = 0,5 =1, k,

to
and for each ¢ and j in the last term, we have:
t 3 . R
E| ) (V (X,) t D}Gi(H,, X, )6W;, Gj(Hy, X,))ds | Fiey ] = 0
0 0

Hence .
BIV(X.) | Py} = BIV(20) | Fpge) + B[ [ LV(X)ds | Fiy ]

From conditions (3.6) and (3.7), we obtain

BINIXD) | Fga) < ks B0l | i) = B[ MIXads | Fip ]
= BB N(eal) | Fiud — ks [ BOIX) | Fggelds as.
0
Applying Gollwitzer’s inequality (cf. Corollary 1.12 in [2]), we have

[ (lXt|) | '7:]t0 t]‘] <kE (|l’0|) l -7:]t0 t]c]e b k2(t=to) a.s..
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Consequently,

E(Xe]) | Ao el < Ke_Kl(t't"), a.s. Vt > tg,

whenever E [)\([l'ol) [ Fity Yt]c] < 8,Vt > to. That is, the equations (1.1) is conditional weak
exponential stable.

Remark. Theorem 3.5 holds for the special case when the wedge function A(s) = sP,s €
R, ,p > 0. In this case, we call the (1.1) conditional p-stable. In the case p = 2, we call it
conditional mean square stable.
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AR HZNBEH Volterra TR HIRENE

K oK, K EH
(PEARKZES2F, JL3 100872)

B B AXGIATXTFHAEMNEZIRIL Volterra HRZARE AT TS, FHExd
FREE R KBS B R B RE AT HIE.
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