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Introduction The graph monoid is a generalization of the graph group. The main
purpose of the investigation of graph monids is to reveal interconnections between graph
theory and semigroup theory. [1] may serve as a survey in this line. Regularity and
various unretractivities are among the major topics in this field (cf. [2-6]). In this paper,
a relationship among unretractivity, E-H-unretractivity and end-regularity of a graph is
described.

1. Preliminaries

Our graphs will be finite, undirected simple ones. If G is a graph, we denote by V(G)
and E(G) its vertex set and edge set respectively. A graph H is called a subgraph of G
if V(H) C V(G) and E(H) C E(G). Moreover, if for any a,b € V(H), {a,b} € E(H) if
and only if {a,b} € E(G), then we call H an induced subgraph of G. A graph G is called
an empty graph if E(G) = 0. We denote by K,, (resp. K,) a complete graph (resp. an
empty graph) with n vertices. Suppose a graph G # K and a € G, if {a,b} ¢ E(G) for
any b € G, then a is called an isolated vertex of G. Let Gy and G; be two graphs with
disjoint vertex sets. The union of G; and G, denoted by G1 U Gy, is a graph such that
V(Gl U Gz) = V(Gl) U V(Gz) and E(G1 U Gz) = E(Gl) U E(Gz)

Let G and H be graphs. A homomorphism f : G — H is a vertex-mapping V(G) —
V(H) which preserves adjacency, i.e., for any a,b € V(G),{a,b} € E(G) implies

{f(a), 7(b)} € E(H).
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A homomorphism from G to itself is called an endomorphism of G. An endomorphism
f is called a strong endomorphism if {f(a), f(b)} € E(G) implies that {a,d} € E(G)
for any a,b € V(G). A bijective endomorphism of a graph G is called an automorphism
of G. By End(G), sEnd(G) and Aut(G) we denote the set of endomorphisms, strong
endomorphisms and automorphisms of graph G respectively. It is well-known that End(G)
is a monoid (a monoid is a semigroup with an identity element) and Aut(G) is a group
with respect to the composition of mappings. They are often simply called the monoid
of G and the group of G respectively. Let G be a graph, a € V(G) and f € End(G).
Denote f~1(a) := {b € V(G)|f(b) = a}. If A is a subgraph of G, we will denote by f|a
the restriction of f on V(A), by f(V(A)) the vertex set {f(z)|z € V(A)} and by id, the
identity mapping from V(A4) to itself. An endomorphism f is said to be half-strong if
{f(a), f(b)} € E(G) implies that there exist ¢ € f~!(f(a)) and d € f~'(f(b)) such that
{c,d} € E(G) (cf.[6]). The set of half-strong endomorphisms of a graph G is denoted by
hEnd(G). Clearly, Aut(G) C sEnd(G) C hEnd(G) C End(G). A graph G is said to be
unretractive (resp. E-H-unretractive and E-S-unretractive) if End(G) = Aut(G) (resp.
End(G) = hEnd(G) and End(G) = sEnd(G)).

Let f be an endomorphism of a graph G. A subgraph of G is called the endomorphic
image of G under f, denoted by Iy, if V(I;) = f(V(G)) and {f(a), f(8)} € E(Iy) if
and only if there exist ¢ € f~!(f(a)) and d € f~!(f(b)) such that {c,d} € E(G), where
a,b,c,d € V(G). By p; we denote the equivalence relation on V(G) induced by f, i.e., for
a,b € V(G), (a,b) € py if and only if f(a) = f(b). Denote by [a],, the equivalence class
of a € V(G) with respect to ps. A graph, denoted by G/py, is called the factor graph of
G under pyg, if V(G/p;) = V(G)/py and {[a],,,[b],,} € E(G/py) if and only if there exist
¢ € [a],,,d € [b],, such that {c,d} € E(G)(cf.[4]).

An element a of a semigroup S is called regular if there exists ¢ in S such that
aza = a. If every element of S is regular, § is called regular. In [1] and (7], it is proved
that sEnd(G) is a regular monoid. If a? = a, then a is called an idempotent of S. A
graph G with End(G) being regular is said to be end-regular. For undefined concepts in
this paper such as connected graph and semigroup, readers are refered to [8] and [9].

The following results quoted from the references will be used later.

Proposition 1 1(6-Proposition2.2]

of hEnd(G).

Let G be a graph. Idempotents of End(G) are elements

Proposition 1.2[10.Propositient ()] Let G be a graph and let f € End(G). Then f €
hEnd(G) if and only if Iy is an induced subgraph of G.

Proposition 1,3[¢Thecrem25] Lot G be a graph and let f € End(G). Then f is regular if
and only if there exist idempotents g, h € End(G) such that p; = pg and I}, = Iy.

2. The main results

In this section, we will derive the main result (Theorem 2.6), which describes a rela-
tionship among unretractivity, E-H-unretractivity and end-regularity of a graph. First,
we need some lemmas,
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Lemma 2.1 Let G be a graph.
(1) If f € End(G) is regular, then f € hEnd(G);
(2) If G is end-regular, then G is E-H-unretractive.

Proof (1) Since f is regualr, then there exists an idempotent A € End(G) such that
I;, = I by Proposition 1.3. Using Proposition 1.1, we have h € hEnd(G) and so I, is an
induced subgraph of G by Proposition 1.2. Thus I; is an induced subgraph of G, which
implies f € AEnd(G). (2) follows directly from (1). O

Lemma 2.2 Let G be an unretractive graph such that G # K,. Then there does not
exist any isolated vertices in G.

Proof Suppose there exists an isolated vertex a € V(G). Since G # Ky, V(G)\ {a} # 0.
Let b € V(G)\ {a} and let f be a mapping from V(G) to itself with f(a) = b and f(z) = =
for any z € V(G) \ {a}. It is routine to check that f € End(G)\ Aut(G), which implies G
is not unretractive. 0O

Lemma 2.3 Let G be an unretractive graph such that G # K, and let f ¢ End(GU K,,).
Then

(1) fle € Aut(G), and Iy is an induced subgraph of G|J K ;

(2) For any [a],, € V((GUKn)/py), llal,, NV (G)| =1 or [[a],, NV (G)| = 0;

(3) There exists an idempotent g € End(G|J K,.) such that p, = p;.

Proof (1) Let a € V(G). By Lemma 2.2 a is not an isolated vertex of G and so there
exists b € G such that {a,8} € E(G) = E(GUK,). Thus {f(a), f(b)} € E(GUK,) =
E(G). Then f(a) € V(G) and so f|g € End(G). Noticing G is unretractive, we have
fle € Aut(G), and so it is easy to see that I is an induced subgraph of G J K.

(2) Suppose there exists [a],, € V((GUK.)/py) such that l[al,, NV(G)| > 2. Let
2,y € [a],,NV(G) (z # y). Then we have f(z) = f(y) and z,y € V(G), which means
fle(z) = fle(y), a contradiction to flg € Aut(G), the result of (1).

(3) By (2) we may construct a mapping g from V(G U K,,) to itself by the following
rule: for any [a],, € V((GUK,)/py), if |[a),, NV(G)| = 1, then let lal,, NV(G) = {c}
and assign g(z) = ¢ for any z € [a],,; if |[a],, NV (G)| = 0, then select (arbitrarily but
fixedly) one vertex c € {a],, and assign g(z) = ¢ for any z € [a],,.

Obviously, g is well-defined as a mapping. It is easy to check that g|g = idg, and so
9 € End(GUK,) noticing E(GUK,) = E(G). Let a € V(GUKn). If [a,, NV(G) = {c}
for some ¢ € V(GUKy), then ¢ € V(G) and g(a) = ¢ = idg(c) = gle(c) = gle) =
9(9(a)) = ¢%(a). If [al,, NV(G) = O, then there exists ¢ € [a],, such that g(z) = c for
any z € [a],,, and so g(a) = ¢ = g(c) = g(g(a)) = g*(a). Thus g is an idempotent of
End(GU K,). By the definition of g, for any z,y € V(GUK,), g(z) = g(y) if and only
if (z],, = [yl,,, i-e., g(2) = g(y) if and only if f(2) = f(y), which implies p; = py.

Lemma 2.4 Let G be a graph, let K,, (n > 1) be a complete graph with n vertices and
let K, (n > 2) be an empty graph with n vertices. Then

( 1)[1‘The°"e’“4‘1] sEnd(G) is regular;

(2)2Tabled1] g s upretractive;
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(3)[2'E’“““plel'2] K, is E-S-unretractive without being unretractive;
(4) End(K,) is regular.

Proof of (4) This follows immediately from (1) and (3).

Proposition 2.5 Let G be an unretractive graph. Then for any n > 1, GUK, is end-
regular.

Proof Suppose G is unretractive. If G = Kj, GUK, = K., and so GUK, is
end regular by Lemma 2.4(4). Now let G # K, and let f ¢ End(GUKp,). Denote
= f(V(E,))NV(K,). We consider two cases: (i) A # 0. Clearly A C V(K,). Let
a 6 A and let h be a mapping from V(GU? ) to itself such that h|g = idg, hla = ida
and h(z) = a for any 2 € V(K,)\ Aif V(K,)\ A # 0. It is easy to check that h is
well-defined and A € End(GUXK,). Since for any z € V(K.)\ 4 (if V(Kn)\ A # 0),
h(z) = a = ida(a) = h|a(a) = h(a) = h*(z), h is an idempotent of End(G|J K ). Then by
Propositions 1.1 and 1.2, I, is an induced subgraph of GUK,. Furthermore, by Lemma
2.3(1) we see V(I;) = V(G)UA = V(I1), and I5 is an induced subgraph of GUK..
Therefore, I; = Ij,. (ii) A = 0. Let a € V(G) and let h be a mapping from V(GUK.,)
to itself such that h|g = idg and h(z) = a for any z € V(K,). Similarly, we can check
that h is an idempotent of End(G|J K,) such that I, = I;. Hence, in any case there
exists an idempotent k € End(G JK ) such that I;, = Iy. Thus, using Lemma 2.3(3) and
Proposition 1.3, we can conclude f is regular. O

Theorem 2.6 Let G be a connected graph. Then the following three statements are
equivalent:

(1) G is unretractive;

(2) For any n > 1, G{UK, is end-regular;

(3) For any n > 1, GUK,, is E-H-unretractive.

Proof (1) = (2) This is a straightforward consequence of Proposition 2.5.
(2) = (3) This follows directly from Lemma 2.1(2).
(3) = (1) Suppose G is not unretractive, i.e.,

End(G)\ Aut(G) # 0. Let ¢ € End(G) \ Aut(G).

Then V(G) \ V(I,;) # 0. Since G is connected, there exist a € V(G)\ V(I,) and b €
V(I,) such that {a,b} € E(G). Let f be a mapping from V(G K,.) to itself such that

f(z) = aif z € V(K,) and f(z) = ¥(2) if z € V(G). Noticing E(GUK,) = E(G) and
¥ € End(G), we see f € End(G|JK ). By the definition of f, a € f(V (K.)) € V(I;) and
be V(I;) = $(V(G)) C V(Iy). Because z € V(K,) for any z € f~!(a), and y € V(G)
for any y € f71(b), {a,b} ¢ E(I;). However, {a,b} € E(GUK,), and so I is not an
induced subgraph of G{JK,. Then by Proposition 1.2 f ¢ hEnd(GUU K ). Thus G UK,
is not E-H-unretractive. O

Remark 2.7 In general, if a graph G is not connected, the three statements in Theorem
2.6 are not equivalent. For examples, let G = K3 |J K;. It follows from Lemma 2.4(2) and
Theorem 2.6 that End(G |J K1) = End(K3|JK>) is regular, however G is not unretractive
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by Lemma 2.2; Let G = K, |J K. It can be checked that G| K; is E-H-unretractive, but

G is not unretractive.
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