Unretractivity and End-Regularity of a Graph *

LI Wei-min

(Dept. of Math., Shanghai Jiaotong University, Shanghai 200240, China)

Abstract: In this paper, a relationship among unretractivity, E-H-unretractivity and end-regularity of a graph is described.

Key words: endomorphism monoid; regularity; unretractivity.

Classification: AMS(2000) 05C25/CLC O157.5

Document code: A **Article ID:** 1000-341X(2002)02-0189-05

Introduction The graph monoid is a generalization of the graph group. The main purpose of the investigation of graph monids is to reveal interconnections between graph theory and semigroup theory. [1] may serve as a survey in this line. Regularity and various unretractivities are among the major topics in this field (cf. [2-6]). In this paper, a relationship among unretractivity, E-H-unretractivity and end-regularity of a graph is described.

1. Preliminaries

Our graphs will be finite, undirected simple ones. If G is a graph, we denote by V(G) and E(G) its vertex set and edge set respectively. A graph H is called a subgraph of G if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. Moreover, if for any $a, b \in V(H)$, $\{a, b\} \in E(H)$ if and only if $\{a, b\} \in E(G)$, then we call H an induced subgraph of G. A graph G is called an empty graph if $E(G) = \emptyset$. We denote by K_n (resp. $\overline{K_n}$) a complete graph (resp. an empty graph) with n vertices. Suppose a graph $G \neq K_1$ and $G \in G$, if $G \in G$ for any $G \in G$, then $G \in G$ is called an isolated vertex of $G \in G$. Let $G \in G$ be two graphs with disjoint vertex sets. The union of $G \cap G$ and $G \cap G$ denoted by $G \cap G$ is a graph such that $G \cap G \cap G$ and $G \cap G$ and $G \cap G$ and $G \cap G$ is a graph such that $G \cap G \cap G$ and $G \cap G$ and $G \cap G$ is a graph such that $G \cap G \cap G$ is a graph

Let G and H be graphs. A homomorphism $f:G\to H$ is a vertex-mapping $V(G)\to V(H)$ which preserves adjacency, i.e., for any $a,b\in V(G),\{a,b\}\in E(G)$ implies

$$\{f(a),f(b)\}\in E(H).$$

^{*}Received date: 1999-05-31

Biography: LI Wei-min, male, Ph.D., Professor.

A homomorphism from G to itself is called an endomorphism of G. An endomorphism f is called a strong endomorphism if $\{f(a), f(b)\} \in E(G)$ implies that $\{a, b\} \in E(G)$ for any $a,b \in V(G)$. A bijective endomorphism of a graph G is called an automorphism of G. By End(G), sEnd(G) and Aut(G) we denote the set of endomorphisms, strong endomorphisms and automorphisms of graph G respectively. It is well-known that End(G)is a monoid (a monoid is a semigroup with an identity element) and Aut(G) is a group with respect to the composition of mappings. They are often simply called the monoid of G and the group of G respectively. Let G be a graph, $a \in V(G)$ and $f \in \text{End}(G)$. Denote $f^{-1}(a) := \{b \in V(G) | f(b) = a\}$. If A is a subgraph of G, we will denote by $f|_A$ the restriction of f on V(A), by f(V(A)) the vertex set $\{f(x)|x\in V(A)\}$ and by id_A the identity mapping from V(A) to itself. An endomorphism f is said to be half-strong if $\{f(a), f(b)\}\in E(G)$ implies that there exist $c\in f^{-1}(f(a))$ and $d\in f^{-1}(f(b))$ such that $\{c,d\} \in E(G)$ (cf.[6]). The set of half-strong endomorphisms of a graph G is denoted by hEnd(G). Clearly, $\text{Aut}(G) \subseteq s\text{End}(G) \subseteq h\text{End}(G) \subseteq \text{End}(G)$. A graph G is said to be unretractive (resp. E-H-unretractive and E-S-unretractive) if End(G) = Aut(G) (resp. $\operatorname{End}(G) = h\operatorname{End}(G)$ and $\operatorname{End}(G) = s\operatorname{End}(G)$.

Let f be an endomorphism of a graph G. A subgraph of G is called the endomorphic image of G under f, denoted by I_f , if $V(I_f) = f(V(G))$ and $\{f(a), f(b)\} \in E(I_f)$ if and only if there exist $c \in f^{-1}(f(a))$ and $d \in f^{-1}(f(b))$ such that $\{c, d\} \in E(G)$, where $a, b, c, d \in V(G)$. By ρ_f we denote the equivalence relation on V(G) induced by f, i.e., for $a, b \in V(G)$, $(a, b) \in \rho_f$ if and only if f(a) = f(b). Denote by $[a]_{\rho_f}$ the equivalence class of $a \in V(G)$ with respect to ρ_f . A graph, denoted by G/ρ_f , is called the factor graph of G under ρ_f , if $V(G/\rho_f) = V(G)/\rho_f$ and $\{[a]_{\rho_f}, [b]_{\rho_f}\} \in E(G/\rho_f)$ if and only if there exist $c \in [a]_{\rho_f}, d \in [b]_{\rho_f}$ such that $\{c, d\} \in E(G)(cf.[4])$.

An element a of a semigroup S is called regular if there exists x in S such that axa = a. If every element of S is regular, S is called regular. In [1] and [7], it is proved that sEnd(G) is a regular monoid. If $a^2 = a$, then a is called an idempotent of S. A graph G with End(G) being regular is said to be end-regular. For undefined concepts in this paper such as connected graph and semigroup, readers are referred to [8] and [9].

The following results quoted from the references will be used later.

Proposition 1.1^[6,Proposition2.2] Let G be a graph. Idempotents of $\operatorname{End}(G)$ are elements of $h\operatorname{End}(G)$.

Proposition 1.2^[10,Proposition1.1(ii)] Let G be a graph and let $f \in \text{End}(G)$. Then $f \in h\text{End}(G)$ if and only if I_f is an induced subgraph of G.

Proposition 1.3^[4,Theorem2.5] Let G be a graph and let $f \in \text{End}(G)$. Then f is regular if and only if there exist idempotents $g, h \in \text{End}(G)$ such that $\rho_g = \rho_f$ and $I_h = I_f$.

2. The main results

In this section, we will derive the main result (Theorem 2.6), which describes a relationship among unretractivity, E-H-unretractivity and end-regularity of a graph. First, we need some lemmas.

Lemma 2.1 Let G be a graph.

- (1) If $f \in \text{End}(G)$ is regular, then $f \in h\text{End}(G)$;
- (2) If G is end-regular, then G is E-H-unretractive.

Proof (1) Since f is regual, then there exists an idempotent $h \in \text{End}(G)$ such that $I_h = I_f$ by Proposition 1.3. Using Proposition 1.1, we have $h \in h\text{End}(G)$ and so I_h is an induced subgraph of G by Proposition 1.2. Thus I_f is an induced subgraph of G, which implies $f \in h\text{End}(G)$. (2) follows directly from (1). \square

Lemma 2.2 Let G be an unretractive graph such that $G \neq K_1$. Then there does not exist any isolated vertices in G.

Proof Suppose there exists an isolated vertex $a \in V(G)$. Since $G \neq K_1$, $V(G) \setminus \{a\} \neq \emptyset$. Let $b \in V(G) \setminus \{a\}$ and let f be a mapping from V(G) to itself with f(a) = b and f(x) = x for any $x \in V(G) \setminus \{a\}$. It is routine to check that $f \in \operatorname{End}(G) \setminus \operatorname{Aut}(G)$, which implies G is not unretractive. \square

Lemma 2.3 Let G be an unretractive graph such that $G \neq K_1$, and let $f \in \text{End}(G \cup \overline{K}_n)$. Then

- (1) $f|_G \in Aut(G)$, and I_f is an induced subgraph of $G \cup \overline{K}_n$;
- (2) For any $[a]_{\rho_f} \in V((G \cup \overline{K}_n)/\rho_f)$, $|[a]_{\rho_f} \cap V(G)| = 1$ or $|[a]_{\rho_f} \cap V(G)| = 0$;
- (3) There exists an idempotent $g \in \operatorname{End}(G \cup \overline{K}_n)$ such that $\rho_g = \rho_f$.

Proof (1) Let $a \in V(G)$. By Lemma 2.2 a is not an isolated vertex of G and so there exists $b \in G$ such that $\{a,b\} \in E(G) = E(G \cup \overline{K}_n)$. Thus $\{f(a),f(b)\} \in E(G \cup \overline{K}_n) = E(G)$. Then $f(a) \in V(G)$ and so $f|_G \in \operatorname{End}(G)$. Noticing G is unretractive, we have $f|_G \in \operatorname{Aut}(G)$, and so it is easy to see that I_f is an induced subgraph of $G \cup \overline{K}_n$.

- (2) Suppose there exists $[a]_{\rho_f} \in V((G \cup \overline{K}_n)/\rho_f)$ such that $|[a]_{\rho_f} \cap V(G)| \geq 2$. Let $x, y \in [a]_{\rho_f} \cap V(G)$ $(x \neq y)$. Then we have f(x) = f(y) and $x, y \in V(G)$, which means $f|_G(x) = f|_G(y)$, a contradiction to $f|_G \in Aut(G)$, the result of (1).
- (3) By (2) we may construct a mapping g from $V(G \cup \overline{K}_n)$ to itself by the following rule: for any $[a]_{\rho_f} \in V((G \cup \overline{K}_n)/\rho_f)$, if $|[a]_{\rho_f} \cap V(G)| = 1$, then let $[a]_{\rho_f} \cap V(G) = \{c\}$ and assign g(x) = c for any $x \in [a]_{\rho_f}$; if $|[a]_{\rho_f} \cap V(G)| = 0$, then select (arbitrarily but fixedly) one vertex $c \in [a]_{\rho_f}$ and assign g(x) = c for any $x \in [a]_{\rho_f}$.

Obviously, g is well-defined as a mapping. It is easy to check that $g|_G = \mathrm{id}_G$, and so $g \in \mathrm{End}(G \cup \overline{K}_n)$ noticing $E(G \cup \overline{K}_n) = E(G)$. Let $a \in V(G \cup \overline{K}_n)$. If $[a]_{\rho_f} \cap V(G) = \{c\}$ for some $c \in V(G \cup \overline{K}_n)$, then $c \in V(G)$ and $g(a) = c = \mathrm{id}_G(c) = g|_G(c) = g(c) = g(g(a)) = g^2(a)$. If $[a]_{\rho_f} \cap V(G) = \emptyset$, then there exists $c \in [a]_{\rho_f}$ such that g(x) = c for any $x \in [a]_{\rho_f}$, and so $g(a) = c = g(c) = g(g(a)) = g^2(a)$. Thus g is an idempotent of $\mathrm{End}(G \cup \overline{K}_n)$. By the definition of g, for any $x, y \in V(G \cup \overline{K}_n)$, g(x) = g(y) if and only if $[x]_{\rho_f} = [y]_{\rho_f}$, i.e., g(x) = g(y) if and only if f(x) = f(y), which implies $\rho_g = \rho_f$.

Lemma 2.4 Let G be a graph, let K_n $(n \ge 1)$ be a complete graph with n vertices and let \overline{K}_n $(n \ge 2)$ be an empty graph with n vertices. Then

- $(1)^{[1,\text{Theorem 4.1}]}$ sEnd(G) is regular;
- $(2)^{[2,\text{Table 4.1.1}]}$ K_n is unretractive;

- (3)[2,Example1.2] \overline{K}_n is E-S-unretractive without being unretractive;
- (4) End(\overline{K}_n) is regular.

Proof of (4) This follows immediately from (1) and (3).

Proposition 2.5 Let G be an unretractive graph. Then for any $n \geq 1$, $G \cup \overline{K}_n$ is end-regular.

Proof Suppose G is unretractive. If $G = K_1$, $G \cup \overline{K}_n = \overline{K}_{n+1}$, and so $G \cup \overline{K}_n$ is end-regular by Lemma 2.4(4). Now let $G \neq K_1$ and let $f \in \operatorname{End}(G \cup \overline{K}_n)$. Denote $A = f(V(\overline{K}_n)) \cap V(\overline{K}_n)$. We consider two cases: (i) $A \neq \emptyset$. Clearly $A \subseteq V(\overline{K}_n)$. Let $a \in A$ and let h be a mapping from $V(G \cup \overline{K}_n)$ to itself such that $h|_G = id_G$, $h|_A = id_A$ and h(x) = a for any $x \in V(\overline{K}_n) \setminus A$ if $V(\overline{K}_n) \setminus A \neq \emptyset$. It is easy to check that h is well-defined and $h \in \operatorname{End}(G \cup \overline{K}_n)$. Since for any $x \in V(\overline{K}_n) \setminus A$ (if $V(\overline{K}_n) \setminus A \neq \emptyset$), $h(x) = a = id_A(a) = h|_A(a) = h(a) = h^2(x)$, h is an idempotent of $\operatorname{End}(G \cup \overline{K}_n)$. Then by Propositions 1.1 and 1.2, I_h is an induced subgraph of $G \cup \overline{K}_n$. Furthermore, by Lemma 2.3(1) we see $V(I_f) = V(G) \cup A = V(I_h)$, and I_f is an induced subgraph of $G \cup \overline{K}_n$. Therefore, $I_f = I_h$. (ii) $A = \emptyset$. Let $a \in V(G)$ and let h be a mapping from $V(G \cup \overline{K}_n)$ to itself such that $h|_G = \operatorname{id}_G$ and h(x) = a for any $x \in V(\overline{K}_n)$. Similarly, we can check that h is an idempotent of $\operatorname{End}(G \cup \overline{K}_n)$ such that $I_h = I_f$. Hence, in any case there exists an idempotent $h \in \operatorname{End}(G \cup \overline{K}_n)$ such that $I_h = I_f$. Thus, using Lemma 2.3(3) and Proposition 1.3, we can conclude f is regular. \square

Theorem 2.6 Let G be a connected graph. Then the following three statements are equivalent:

- (1) G is unretractive;
- (2) For any $n \geq 1$, $G \cup \overline{K}_n$ is end-regular;
- (3) For any $n \geq 1$, $G \cup \overline{K}_n$ is E-H-unretractive.

Proof (1) \Rightarrow (2) This is a straightforward consequence of Proposition 2.5.

- (2) \Rightarrow (3) This follows directly from Lemma 2.1(2).
- $(3) \Rightarrow (1)$ Suppose G is not unretractive, i.e.,

$$\operatorname{End}(G)\setminus\operatorname{Aut}(G)
eq\emptyset$$
. Let $\psi\in\operatorname{End}(G)\setminus\operatorname{Aut}(G)$.

Then $V(G) \setminus V(I_{\psi}) \neq \emptyset$. Since G is connected, there exist $a \in V(G) \setminus V(I_{\psi})$ and $b \in V(I_{\psi})$ such that $\{a,b\} \in E(G)$. Let f be a mapping from $V(G \cup \overline{K}_n)$ to itself such that f(x) = a if $x \in V(\overline{K}_n)$ and $f(x) = \psi(x)$ if $x \in V(G)$. Noticing $E(G \cup \overline{K}_n) = E(G)$ and $\psi \in \operatorname{End}(G)$, we see $f \in \operatorname{End}(G \cup \overline{K}_n)$. By the definition of f, $a \in f(V(\overline{K}_n)) \subseteq V(I_f)$ and $b \in V(I_{\psi}) = \psi(V(G)) \subseteq V(I_f)$. Because $x \in V(\overline{K}_n)$ for any $x \in f^{-1}(a)$, and $y \in V(G)$ for any $y \in f^{-1}(b)$, $\{a,b\} \notin E(I_f)$. However, $\{a,b\} \in E(G \cup \overline{K}_n)$, and so I_f is not an induced subgraph of $G \cup \overline{K}_n$. Then by Proposition 1.2 $f \notin h\operatorname{End}(G \cup \overline{K}_n)$. Thus $G \cup \overline{K}_n$ is not E-H-unretractive. \square

Remark 2.7 In general, if a graph G is not connected, the three statements in Theorem 2.6 are not equivalent. For examples, let $G = K_3 \cup K_1$. It follows from Lemma 2.4(2) and Theorem 2.6 that $\operatorname{End}(G \cup K_1) = \operatorname{End}(K_3 \cup \overline{K}_2)$ is regular, however G is not unretractive

by Lemma 2.2; Let $G = K_2 \bigcup K_2$. It can be checked that $G \bigcup K_1$ is E-H-unretractive, but G is not unretractive.

References:

- [1] KNAUER U, NIEPORTE M. Endomorphisms of graphs I, the monoid of strong endomorphisms [J]. Arch. Math., 1989, 52: 607-614.
- [2] KNAUER U. Endomorphisms of graphs II, various unretractive graphs [J]. Arch. Math., 1990, 55: 193-203.
- [3] LI W M. A note on the E-S-unretractive graphs [J]. Journal of combinatorics, information and system science, 1996, 21: 27-33.
- [4] LI W M. A regular endomorphism of a graph and its inverses [J]. Mathematika, 1994, 41: 189-198.
- [5] WILKEIT E. Graphs with a regular endomorphism monoid [J]. Arch. Math., 1996, 66: 344-352.
- [6] KNAUER U, BÖTTCHER M. Endomorphism spectra of graphs [J]. Discr. Math., 1992, 109: 45-57.
- [7] LI W M. Green's relations on the strong endomorphism monoid of a graph [J]. Semigroup Forum, 1993, 47: 209-214.
- [8] HARARY F. Graph Theory [M]. Addison-Wesley, Reading, 1969.
- [9] HOWIE J M. An Introduction to Semigroup Theory [M]. Academic Press, New York-London, 1976
- [10] LI W M. An approach to construct an end-regular graph [J]. Applied Mathematics A Journal of Chinese Universities, Ser. B, 1998, 13: 171-178.

图的不可收缩性和 end- 正则性

李为民

(上海交通大学数学系,上海 200240)

海 要: 图的半群理论是图的群理论的延伸. 图的不可收缩性和 end- 正则性是其中受到普遍关注的课题. 本文揭示了两者之间的内在联系.