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Abstract: As a continuation of the work of Beattie on quantum groups constructed by
Ore extensions, in this paper, we characterize their centre and discuss the category of
quantum Yang-Baxter modules over them. In addition, we determine all finite dimen-
sional irreducible representations over these gnantum groups.
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1. Introduction

Suppose that k is a field of characteristic zero and C is a cyclic group with generator
c. Let A = kC be the group algebra of C over k. According to Beattie [1,2], the Hopf
algebra (kC)y; is defined as follows: where A is a non-zero element in k and ¢ is a fixed
integer, as an algebra, the structure of (kC),; coincides with the Ore extension A[X, @]
with derivation 0 (cf. [1]), where ¢ is the automorphism of algebra A determined by
#(c) = A71c for any X if C is infinite or X is a primitive m-th root of unity when C has
finite order m. The Hopf algebra structure on A[X, ] is determined by

Aley=c®e, AX)=c@X+X®1,
ec) =1, e(X)=0,
S(c)=c7!, §(X)=-c'X.

We note that when A # 1 the Hopf algebra (kC}, ; is non-commutative and non cocommu-
tative. We call the Hopf algebra (kC'), ; defined as above Beattie quantum group. Thus
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we give infinitely many examples of quantum groups. In [1], Beattie has showed that the
quantum group (kC),; is pointed and not co-Frobenius (1, Proposition 4.1]. Moreover,
if X' is a primitive n-th root unity, then the quantum group (kC), ,; = (kC), ;/(X") is
pointed, co-Frobenius and not unimodular [1, Proposition 4.3], where (X™) denotes the
bi-ideal generated by X™. The quantum groups (kC), ; and (kC), , ; cover the examples
in [1,2,13).

The main purpose of this paper is to give explicit description of the centre of (kC) i
and finite dimensional simple (kC), ;-module. More precisely, in section 2, we show (kC)y;
is a Z-graded Hopf algebra, as a direct consequence, we obtain the result that (kC), ; is
pointed. In addition, we give explicitly characterization of the centre of (kC') a;- In section
3, by using the techniques similar to that in the reprsentation of Lie algebra [14], we give
all finite dimensional simple (kC) »;-modules. In section 4, we discuss the category of
quantum Yang-Baxter (kC), ;-modules (cf. [5,8,9,10]) when C is finite. For simplicity,
throughout this paper, k denotes the field of complex numbers. We use the standard
summatative notation in Sweedler’s book [15] on Hopf algebra and the notation in Majid’s
book [6] on quantum group.

2. Some algebraic properties on (kC), ;

We continue using the notation in [1} on (kC), ;. Notice that the algebra (kC), ; can
be regarded as an algebra with generators ¢ and X satisfying the following relations

Xe=A"1cX.

In the case that C has order m, we take A a primitive m-th root of unity. By a direct
calculation, we have in (kC), ;

Xsct — /\——tscth’ tc Z, s € N. (21)

We note that (kC), ; has a basis {c!X*}, where s € N and t € Z for C infinite or ¢ is
an integer between 0 and m — 1 if C has order m. We also note that S? is the inner
automorphism induced by ¢, hence $?(X) = A~*X. Therefore, when X is not a root of
unity, the order of S is infinite and when )\ is a primitive m-th root of unity, then the
order of S is 2m.

Let ¢ be a non-zero element in k. Recall [3,6] that the Gauss polymonial is defined by

( n ) _ (n)lq
k . T (k) (n = k)’

where 0 < k < n. Using this polynomial, the comultiplication on basis elements in (kC), ;
is given by

AltX*) =) ( : ) cttrixek g ctx*k, (2.2)
0<k<s AY

In [1}, Beattie has proved that H is pointed, i.e, Corad(H) = G(H) = kC, where H =
(kC), ;- Moreover, we have
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Proposition 2.1 The quantum group H = (kC), ; is a Z-graded Hopf algebra.

Proof According to the definition of the Z-graded Hopf algebra [15], we shall prove that
there exists a subspace sequence {4,}, .y of H such that H is the direct sum of subspaces
A, H = @ A, satisfying AxA; C Arqr, &(AR) C Y Ax © An—k and €(A,) = 0 for
n=0 k=1

n > 1. Consider the subspace A, generated by {yX"}, .y, where y € A = Aq. It is readily
checked that A, satisfies the requested properties O

From the proof of Proposition 2.1, we have 4o = A = kC. By [15, Proposition 11.1.1],
we know Corad(H) C Ag. Hence we have kC = Corad(H).

Now we consider the centre of (kC), ;, we have

Proposition 2.2 For any cyclic group C, let H = (kC), ; and Z(H) be the centre of H.
Then Y

(1) IfC is infinite, and A is not a root of unity, then Z(H) = k;

(2) If C is infinite, A a primitive m-th root of unity, then Z(H) = k[c™,e™™, X™],
where k[c™,c™™, X™] denotes the subalgebra of H generated by c™, ¢c™™, X™;

(3) If C is finite with order m, then Z(H) = k[X™].

Proof First, let u € Z(H), then we write u as
u = Z agct X",
t,s

Since u commutes with ¢ and X, we have

Zatsc‘“X’ = Zat_,)\—’ctHX” (2.3)
t,s t,s

and
Z ag,ct Xt = Z PPN CALS (2.4)
t.s t,g

Now we consider the following three cases.

(1) When C is infinte and X is not a root unity. It is clear from the relations (2.3-2.4)
that v € Z(H) if and only if s = 0 and ¢ = 0, which implies « € k.

(2) Suppose that C is infinite and X is a primitive m-th root of unity. By relation (2.1),
it is easy to check that ¢™ and X™ belong to the centre of H. Hence k[c™,c™™,X™] C
Z(H). Again, let v € Z(H), from the relation (2.3-2.4), we immediately have a;; = 0
except that m|s and mlt, i.e., it follows that u is of the form

u= Z ag, €™ X™s € k[c™, 7™ X ™.
t,s
Hence Z(H) = k[c™,c™™, X™].
(3) Suppose that C is finite with order m. An argument similar to that in (2) shows
that Z(H) = k[X™]. O
We note that A~* is also an m-th root of unity when ) is a primitive m-th root of unity.
The Gauss polynomial (7),_; = 0 for 1 < k < m — 1. Hence from the relation (2.2) we
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have A(X™) = X™®1+c™Q@X™ € Z(H)®Z(H) and A(c™) = c™@c™ € Z(H)®Z(H).
Moreover, S(¢™) = ¢™™, S(X™) = (-1)"A™c ™ X™ € Z(H), therefore we have

Corollary 2.3 The centre Z(H) of H = (kC), ; is a Hopf subalgebra of H.

3. Finite dimentional simple (kC}, ;-module

In this section, we assume that A # 1, and A is a primitive m-th root of unity. If A
is not a root of unity, we set m = oo. Our aim in this section is to determine all finite
dimentional simple (kC}, ;-module by using the techniques similar to the weight theory
of Lie algebra (cf. [14]).

For any (kC), ;-module V and any scalar 6 # 0, denote by Vj the eigen subspace of V
for c,i.e., Vg = {v € V|cv = Bv}. We call § a weight of V if Vy # 0, in this case 0 £ v € Vj
is called weight vector with weight 6. A weight ¢ is said to be a highest weight with weight
vector v if Xv = 0, the vector v is called a highest weight vector.

Lemma 3.1 Suppose that V is a finite dimensional (kC)M-moduIe of dimension n < m,
then V contains a highest weight vector. Moreover, the action induced by X on V is
nilpotent.

Proof Since k = C is algebraically closed and V is a finite dimensional (kC), ;-module,
we know that there exists a non-zero vertor v and a scalar 6 # 0 such that cv = fv. If
Xv = 0, then the vector v is a highest weight vector with weight 6. If Xv # 0, then for
0 <t <n, we have

o(Xtv) = M X (cv) = OAY(XM0),

which implies that X*v is an eigenvector with eigenvalue §A* for ¢. Since n < m, we get
n + 1 eigenvector with pairwise distinct eigenvalues for ¢. Hence, there exists an integer
t such that X'v # 0, X**?v = 0. Thus, the vector X%v is a highest weight vector with
weight Ot

We now prove that the action of X is nilpotent. Clearly, it suffices to check that
0 is the only possible eigenvalue of X. Suppose that v is a non-zero eigenvector for X
with eigenvalue b # 0. By the relation Xc = A~ 'cX, for 0 < ¢t < n, c'v is a eigenvector
with eigenvalue A~*h. Again, we have n + 1 eigenvector with distinct eigenvalues for X, a
contradiction. O

Theorem 3.2 Suppose that V is a finite dimensional (kC), ;-module with dimension
n < m. IfV is simple, then n = 1. In particular, when m is not a root of unity, any
simple finite dimensional (kC), ;-module is one dimensional.

Proof According to Lemma 3.1, there exists a highest weight vector v with weight 6 # 0,
that is, cv = fv and Xv = 0. Clearly, V' = kv is a submudule of V. Hence V = kv, which
implies that V' is one dimensional. O

Let us take any scalar 6 # 0 if C is infinite and # be a primitive m-th root of unity
if C is finite with order m. Consider the one dimensional vector V = kv with basis v,
define cv = v and Xv = 0. It is easy to check that V is a (kC), ;-module. We denote the
module defined above by V4. By Theorem 3.2, we see that any ’simple finite dimensional
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(kC) »i-module with dimension < m is isomorphic V4. Moreover, up to isomorphism, when
C is infinite, (kC) a; has infinitely many one dimensional modules. When C is finite with
order m, then the number of one dimensional module is m. The following Lemma is well
known

Lemma 3.3 For any finite dimensional simple (kC’)l\ﬂ.-module, the action of the element
in Z(H) coincides with a saclar.

Theorem 3.4 Suppose that ) is a primitive m-th root of unity. Then there is no finite
dimensional simple (kC), ;-module with dimension > m.

Proof We first consider the case in which there exists a non-zero eigenvector v € V for
the action of ¢ such that Xv = 0. Then the subspace V' generated by v is a submodule of
V. A contradiction.

Now consider that there exists no non-zero eigenvector v € V for the action of ¢ such
that Xv = 0. Let v be a non-zero eigenvector with eigenvalue 6 for the action of ¢. We have
Xv # 0. We shall show the subspace V' generated v, Xv, ---, X™ 1 is also a submodule
with dimension < m. Clearly, V' is stable under ¢ because ¢(X*v) = A*0X*v € V'
for 0 < s < m - 1. Now, we show V' is stable under X. If 0 < s < m — 2, then
X(Xv)=X**lve V' . If s=m—1, we have X(X™ 0) = X™v = av € V' since X™ is
in the centre of (kC'), ; and by Lemma 3.3, where o € k. Indeed we also have a # 0. If
a = 0, there would exist an integer s < m — 1 such that X*v would be an eigenvector for
¢ and X**t1v = 0, which would contradict our assumption. O

Now we consider simple (kC), ;-module with dimension m, when A is a primitive m-th
root of unity. We first construct a class of m-dimensional simple (kC), ;-module. Let us
consider an m-dimensional vector space V with a basis {vg,v1,- -, vn-1}. We take any
scalar 8 # 0 if C is infinite and 6 is a primitive m-th root of unity if C is finite with
order m. Define cv, = 6X°v, for 1 < s <m-1, Xv,_3 = v, for 1 < s < m -~ 2, and
Xvyp-1 = Yvg, where v € k. It is easy to check that V equipped the above action of
(kC),; is an m-dimensional simple (kC'), ;-module, denote this module by V5.

Theorem 3.5 For any simple (kC), ;-module V with dimension m, then there exist 8
and v in k such that V is isomorphic to Vg .

Proof Since there exists a nonzero eigenvector with eigenvalue ¢ # 0 for the action of ¢,
we write cvg = Ovg for some vy # 0. In view of the fact that V' is simple, we have Xvy # 0,
otherwise V' = kuvp is submodule of V. Using similar argument, we have X*vy # 0
for 0 < s < m~1. Thus {X°vo}ocs<m-1 are non-zero eigenvectors of ¢ with distinct
eigenvalues {A*0}o<,<m-1. Hence the vector sequence {X°vo}o<s<m—-1 is independent
over k. Therefore V equals the vector space generated by vg, Xvg, ---, X™ 1vy. We note
also that X™uvg is an eigenvector of ¢ with eigenvalue A™8 = 6, hence there exists a y € k
such that X™wvy = yvy. Thus the assertion is proved. O

We now suppose that A’ is a primitive n-th root of unity. According to [1, Proposition
4.2], we know the ideal (X™) generated by X™ is a bi-ideal. One can form a quantum
group (kC),, ,; = (kC),,/(X™). It is clear that a finite dimensional (kC),, , ;-module is
simple if and only if it is simple as (kC),;-module on which X™ acts by 0. By using
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Theorem 3.2, Theorem 3.4 and Theorem 3.5, it is not difficult to prove the following

Proposition 3.6 Any finite dimensional simple (kC), \ ;-module is isomorphic to Vy or
Voo

4. Quantum Yang-Baxter (k(C), ;-module

Generally, let H be a Hopf algebra over a field k. a left quantum Yang-Baxter H-
module (or left bicrossed H-module) introduced in [9,12] is a triple (V,-,p), where (v,
is a left H-module and (V, p) is a right H-comodule, satisfying the following compatiblity
condition

Z hivo ® havy = Z (hov)y @ (hav)1hy,

for all h € H and v € V, where we write A(h) = Y hy ® hy and p(v) = Y vo ® v1.
Denote by Y B the category of left quantum Yang-Baxter H-modules. It is well known
that quantum Yang-Baxter modules are quite related to the solutions of the Yang-Baxter
equation, low dimensional topology and knot theory. Recently, many papers are denoted
to discuss these connections (c.f., e.g., [4,7,10,11]).

Suppose that H is a finite dimensional Hopf algebra over k. By [8, Proposition 4], we
know the category g Y B is isomorphic to the category of left modules over the Drinfel’d
double D(H).

Now suppose that Hopf algebra H has a bijection antipode S, denote by H® the dual
Hopf algebra. Then (H°)*” and H form matched a pair Hopf algebra in the sense of
Majid(®l. We denote by Dy (H®°) the double crossproduct (H°)*? 0« H (c.f., [7]). By the
argument similar to that in [5,7,8], we have following

Proposition 4.1 Suppose that H is a Hopf algebra with bijection antipode S and H°
is dense in H*. Then the category g YBY is isomorphic to the category of left rational
Dy (H®)-module, where left rational Dy(H°)-module means that it is rational as left
H°-module.

We know a few examples of Hopf algebras in which H® is dense in H* when H is
infinite. Now we take H = (kC), ;, where C is finite with order m. Then we have

Theorem 4.2 Suppose that C is finite and H = (kC), ;. Then H® is dense in H".

Proof By Proposition 2.1, we know H is a Z-graded Hopf algebra with H,, spanned by
{yX"}yea, where A = kC. Since C is finite, H,, is finite dimensional. Hence H is a locally
finite graded Hopf algebra. Therefore the graded dual Hopf algebra HY is dense in H*
(15, section 11.2]. So the assertion follows from the fact that #9 C H°. O

As a direct consequence of Theorm 4.2 and Proposition 4.1, we have

Corollary 4.3 Suppose that C is finite, H = (kC), ;. Then the category gYBH can be
identified with the category of left rational Dy (H°)-module.

We end this section by noting that (kC), ; is pointed for any cyclic group C, using the
proof of [7, Proposition 11], it is easy to see that every simple object V in gV B has the
form of Hv, where p(v) = v®y for some y € C. A question for determining the dimension
of simple objects in )Y B needs further work.
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