Quantum Groups by Ore Extensions Associated with Group Algebras *

LI Li-bin¹, LI Shang-zhi²

- (1. Dept. of Math., Yangzhou University, Jiangsu 225002, China;
- 2. Dept. of Math., Univ. of Sci. & Tech. of China, Hefei 230026, China)

Abstract: As a continuation of the work of Beattie on quantum groups constructed by Ore extensions, in this paper, we characterize their centre and discuss the category of quantum Yang-Baxter modules over them. In addition, we determine all finite dimensional irreducible representations over these quantum groups.

Key words: Quantum group; centre; quantum Yang-Baxter module; irreducible representation.

Classification: AMS(2000) 16S40,16W30/CLC O153.3

Document code: A Article ID: 1000-341X(2002)02-0205-07

1. Introduction

Suppose that k is a field of characteristic zero and C is a cyclic group with generator c. Let A = kC be the group algebra of C over k. According to Beattie [1,2], the Hopf algebra $(kC)_{\lambda,i}$ is defined as follows: where λ is a non-zero element in k and i is a fixed integer, as an algebra, the structure of $(kC)_{\lambda,i}$ coincides with the Ore extension $A[X,\phi]$ with derivation 0 (cf. [1]), where ϕ is the automorphism of algebra A determined by $\phi(c) = \lambda^{-1}c$ for any λ if C is infinite or λ is a primitive m-th root of unity when C has finite order m. The Hopf algebra structure on $A[X,\phi]$ is determined by

$$\triangle(c) = c \otimes c, \quad \triangle(X) = c^i \otimes X + X \otimes 1,$$

$$\varepsilon(c) = 1, \quad \varepsilon(X) = 0,$$

$$S(c) = c^{-1}, \quad S(X) = -c^{-i}X.$$

We note that when $\lambda \neq 1$ the Hopf algebra $(kC)_{\lambda,i}$ is non-commutative and non cocommutative. We call the Hopf algebra $(kC)_{\lambda,i}$ defined as above Beattie quantum group. Thus

^{*}Received date: 1999-03-23

Foundation item: Supported by the National Natural Science Foundation of China (10071078) and the Young Teacher's Projects from the Chinese Education Ministry.

Biography: LI Li-bin (1964-), Ph.D.

E-mail: lisz@ustc.edu.cn

we give infinitely many examples of quantum groups. In [1], Beattie has showed that the quantum group $(kC)_{\lambda,i}$ is pointed and not co-Frobenius [1, Proposition 4.1]. Moreover, if λ^i is a primitive n-th root unity, then the quantum group $(kC)_{n,\lambda,i} = (kC)_{\lambda,i}/(X^n)$ is pointed, co-Frobenius and not unimodular [1, Proposition 4.3], where (X^n) denotes the bi-ideal generated by X^n . The quantum groups $(kC)_{\lambda,i}$ and $(kC)_{n,\lambda,i}$ cover the examples in [1,2,13].

The main purpose of this paper is to give explicit description of the centre of $(kC)_{\lambda,i}$ and finite dimensional simple $(kC)_{\lambda,i}$ -module. More precisely, in section 2, we show $(kC)_{\lambda,i}$ is a \mathbb{Z} -graded Hopf algebra, as a direct consequence, we obtain the result that $(kC)_{\lambda,i}$ is pointed. In addition, we give explicitly characterization of the centre of $(kC)_{\lambda,i}$. In section 3, by using the techniques similar to that in the representation of Lie algebra [14], we give all finite dimensional simple $(kC)_{\lambda,i}$ -modules. In section 4, we discuss the category of quantum Yang-Baxter $(kC)_{\lambda,i}$ -modules (cf. [5,8,9,10]) when C is finite. For simplicity, throughout this paper, k denotes the field of complex numbers. We use the standard summatative notation in Sweedler's book [15] on Hopf algebra and the notation in Majid's book [6] on quantum group.

2. Some algebraic properties on $(kC)_{\lambda}$

We continue using the notation in [1] on $(kC)_{\lambda,i}$. Notice that the algebra $(kC)_{\lambda,i}$ can be regarded as an algebra with generators c and X satisfying the following relations

$$Xc = \lambda^{-1}cX$$
.

In the case that C has order m, we take λ a primitive m-th root of unity. By a direct calculation, we have in $(kC)_{\lambda i}$

$$X^s c^t = \lambda^{-ts} c^t X^s, \quad t \in \mathbb{Z}, \quad s \in \mathbb{N}.$$
 (2.1)

We note that $(kC)_{\lambda,i}$ has a basis $\{c^tX^s\}$, where $s \in \mathbb{N}$ and $t \in \mathbb{Z}$ for C infinite or t is an integer between 0 and m-1 if C has order m. We also note that S^2 is the inner automorphism induced by c^{-i} , hence $S^2(X) = \lambda^{-i}X$. Therefore, when λ is not a root of unity, the order of S is infinite and when λ is a primitive m-th root of unity, then the order of S is 2m.

Let q be a non-zero element in k. Recall [3,6] that the Gauss polymonial is defined by

$$\left(\begin{array}{c} n \\ k \end{array}\right)_{q} = \frac{(n)!_{q}}{(k)!_{q}(n-k)!_{q}},$$

where $0 \le k \le n$. Using this polynomial, the comultiplication on basis elements in $(kC)_{\lambda,i}$ is given by

$$\triangle(c^t X^s) = \sum_{0 \le k \le s} \binom{n}{k}_{\lambda^{-i}} c^{t+ki} X^{s-k} \otimes c^t X^k. \tag{2.2}$$

In [1], Beattie has proved that H is pointed, i.e, Corad(H) = G(H) = kC, where $H = (kC)_{\lambda,i}$. Moreover, we have

Proposition 2.1 The quantum group $H = (kC)_{\lambda,i}$ is a \mathbb{Z} -graded Hopf algebra.

Proof According to the definition of the \mathbb{Z} -graded Hopf algebra [15], we shall prove that there exists a subspace sequence $\{A_n\}_{n\in\mathbb{N}}$ of H such that H is the direct sum of subspaces

 $A_n, H = \bigoplus_{n=0}^{\infty} A_n$, satisfying $A_k A_l \subset A_{k+l}$, $\triangle(A_n) \subset \sum_{k=1}^n A_k \otimes A_{n-k}$ and $\varepsilon(A_n) = 0$ for $n \ge 1$. Consider the subspace A_n generated by $\{yX^n\}_{n \in \mathbb{N}}$, where $y \in A = A_0$. It is readily checked that A_n satisfies the requested properties \square

From the proof of Proposition 2.1, we have $A_0 = A = kC$. By [15, Proposition 11.1.1], we know $Corad(H) \subset A_0$. Hence we have kC = Corad(H).

Now we consider the centre of $(kC)_{\lambda i}$, we have

Proposition 2.2 For any cyclic group C, let $H = (kC)_{\lambda,i}$ and Z(H) be the centre of H.

- (1) If C is infinite, and λ is not a root of unity, then Z(H) = k;
- (2) If C is infinite, λ a primitive m-th root of unity, then $Z(H) = k[c^m, c^{-m}, X^m]$, where $k[c^m, c^{-m}, X^m]$ denotes the subalgebra of H generated by c^m, c^{-m}, X^m ;
 - (3) If C is finite with order m, then $Z(H) = k[X^m]$.

Proof First, let $u \in Z(H)$, then we write u as

$$u = \sum_{t,s} a_{ts} c^t X^s.$$

Since u commutes with c and X, we have

$$\sum_{t,s} a_{ts} c^{t+1} X^s = \sum_{t,s} a_{ts} \lambda^{-s} c^{t+1} X^s$$
 (2.3)

and

$$\sum_{t,s} a_{ts} c^t X^{s+1} = \sum_{t,s} a_{ts} \lambda^{-t} c^t X^{s+1}. \tag{2.4}$$

Now we consider the following three cases.

- (1) When C is infinte and λ is not a root unity. It is clear from the relations (2.3-2.4) that $u \in Z(H)$ if and only if s = 0 and t = 0, which implies $u \in k$.
- (2) Suppose that C is infinite and λ is a primitive m-th root of unity. By relation (2.1), it is easy to check that c^m and X^m belong to the centre of H. Hence $k[c^m, c^{-m}, X^m] \subset Z(H)$. Again, let $u \in Z(H)$, from the relation (2.3-2.4), we immediately have $a_{ts} = 0$ except that m|s and m|t, i.e., it follows that u is of the form

$$u = \sum_{t,s} a_{ts} c^{mt} X^m s \in k[c^m, c^{-m}, X^m].$$

Hence $Z(H) = k[c^m, c^{-m}, X^m].$

(3) Suppose that C is finite with order m. An argument similar to that in (2) shows that $Z(H) = k[X^m]$. \square

We note that λ^{-i} is also an m-th root of unity when λ is a primitive m-th root of unity. The Gauss polynomial $\binom{m}{k}_{\lambda^{-i}} = 0$ for $1 \le k \le m-1$. Hence from the relation (2.2) we

have $\triangle(X^m) = X^m \otimes 1 + c^{mi} \otimes X^m \in Z(H) \otimes Z(H)$ and $\triangle(c^m) = c^m \otimes c^m \in Z(H) \otimes Z(H)$. Moreover, $S(c^m) = c^{-m}$, $S(X^m) = (-1)^m \lambda^{mi} c^{-mi} X^m \in Z(H)$, therefore we have

Corollary 2.3 The centre Z(H) of $H = (kC)_{\lambda,i}$ is a Hopf subalgebra of H.

3. Finite dimentional simple $(kC)_{\lambda}$ -module

In this section, we assume that $\lambda \neq 1$, and λ is a primitive *m*-th root of unity. If λ is not a root of unity, we set $m = \infty$. Our aim in this section is to determine all finite dimentional simple $(kC)_{\lambda,i}$ -module by using the techniques similar to the weight theory of Lie algebra (cf. [14]).

For any $(kC)_{\lambda,i}$ -module V and any scalar $\theta \neq 0$, denote by V_{θ} the eigen subspace of V for c, i.e., $V_{\theta} = \{v \in V | cv = \theta v\}$. We call θ a weight of V if $V_{\theta} \neq 0$, in this case $0 \neq v \in V_{\theta}$ is called weight vector with weight θ . A weight θ is said to be a highest weight with weight vector v if Xv = 0, the vector v is called a highest weight vector.

Lemma 3.1 Suppose that V is a finite dimensional $(kC)_{\lambda,i}$ -module of dimension n < m, then V contains a highest weight vector. Moreover, the action induced by X on V is nilpotent.

Proof Since $k = \mathbb{C}$ is algebraically closed and V is a finite dimensional $(kC)_{\lambda,i}$ -module, we know that there exists a non-zero vertor v and a scalar $\theta \neq 0$ such that $cv = \theta v$. If Xv = 0, then the vector v is a highest weight vector with weight θ . If $Xv \neq 0$, then for $0 \leq t \leq n$, we have

$$c(X^t v) = \lambda^t X^t(cv) = \theta \lambda^t (X^t v),$$

which implies that X^tv is an eigenvector with eigenvalue $\theta\lambda^t$ for c. Since n < m, we get n+1 eigenvector with pairwise distinct eigenvalues for c. Hence, there exists an integer t such that $X^tv \neq 0$, $X^{t+1}v = 0$. Thus, the vector X^tv is a highest weight vector with weight $\theta\lambda^t$.

We now prove that the action of X is nilpotent. Clearly, it suffices to check that 0 is the only possible eigenvalue of X. Suppose that v is a non-zero eigenvector for X with eigenvalue $b \neq 0$. By the relation $Xc = \lambda^{-1}cX$, for $0 \leq t \leq n$, c^tv is a eigenvector with eigenvalue $\lambda^{-t}b$. Again, we have n+1 eigenvector with distinct eigenvalues for X, a contradiction. \square

Theorem 3.2 Suppose that V is a finite dimensional $(kC)_{\lambda,i}$ -module with dimension n < m. If V is simple, then n = 1. In particular, when m is not a root of unity, any simple finite dimensional $(kC)_{\lambda,i}$ -module is one dimensional.

Proof According to Lemma 3.1, there exists a highest weight vector v with weight $\theta \neq 0$, that is, $cv = \theta v$ and Xv = 0. Clearly, V' = kv is a submudule of V. Hence V = kv, which implies that V is one dimensional. \square

Let us take any scalar $\theta \neq 0$ if C is infinite and θ be a primitive m-th root of unity if C is finite with order m. Consider the one dimensional vector V = kv with basis v, define $cv = \theta v$ and Xv = 0. It is easy to check that V is a $(kC)_{\lambda,i}$ -module. We denote the module defined above by V_{θ} . By Theorem 3.2, we see that any simple finite dimensional

 $(kC)_{\lambda,i}$ -module with dimension < m is isomorphic V_{θ} . Moreover, up to isomorphism, when C is infinite, $(kC)_{\lambda,i}$ has infinitely many one dimensional modules. When C is finite with order m, then the number of one dimensional module is m. The following Lemma is well known

Lemma 3.3 For any finite dimensional simple $(kC)_{\lambda,i}$ -module, the action of the element in Z(H) coincides with a saclar.

Theorem 3.4 Suppose that λ is a primitive m-th root of unity. Then there is no finite dimensional simple $(kC)_{\lambda,i}$ -module with dimension > m.

Proof We first consider the case in which there exists a non-zero eigenvector $v \in V$ for the action of c such that Xv = 0. Then the subspace V' generated by v is a submodule of V. A contradiction.

Now consider that there exists no non-zero eigenvector $v \in V$ for the action of c such that Xv=0. Let v be a non-zero eigenvector with eigenvalue θ for the action of c. We have $Xv \neq 0$. We shall show the subspace V' generated $v, Xv, \dots, X^{m-1}v$ is also a submodule with dimension < m. Clearly, V' is stable under c because $c(X^sv) = \lambda^s\theta X^sv \in V'$ for $0 \leq s \leq m-1$. Now, we show V' is stable under X. If $0 \leq s \leq m-2$, then $X(X^sv) = X^{s+1}v \in V'$. If s = m-1, we have $X(X^{m-1}v) = X^mv = \alpha v \in V'$ since X^m is in the centre of $(kC)_{\lambda,i}$ and by Lemma 3.3, where $\alpha \in k$. Indeed we also have $\alpha \neq 0$. If $\alpha = 0$, there would exist an integer $s \leq m-1$ such that X^sv would be an eigenvector for c and $X^{s+1}v = 0$, which would contradict our assumption. \square

Now we consider simple $(kC)_{\lambda,i}$ -module with dimension m, when λ is a primitive m-th root of unity. We first construct a class of m-dimensional simple $(kC)_{\lambda,i}$ -module. Let us consider an m-dimensional vector space V with a basis $\{v_0, v_1, \dots, v_{m-1}\}$. We take any scalar $\theta \neq 0$ if C is infinite and θ is a primitive m-th root of unity if C is finite with order m. Define $cv_s = \theta \lambda^s v_s$ for $1 \leq s \leq m-1$, $Xv_{s-1} = v_s$ for $1 \leq s \leq m-2$, and $Xv_{m-1} = \gamma v_0$, where $\gamma \in k$. It is easy to check that V equipped the above action of $(kC)_{\lambda,i}$ is an m-dimensional simple $(kC)_{\lambda,i}$ -module, denote this module by $V_{\theta,\gamma}$.

Theorem 3.5 For any simple $(kC)_{\lambda,i}$ -module V with dimension m, then there exist θ and γ in k such that V is isomorphic to $V_{\theta,\gamma}$.

Proof Since there exists a nonzero eigenvector with eigenvalue $\theta \neq 0$ for the action of c, we write $cv_0 = \theta v_0$ for some $v_0 \neq 0$. In view of the fact that V is simple, we have $Xv_0 \neq 0$, otherwise $V' = kv_0$ is submodule of V. Using similar argument, we have $X^sv_0 \neq 0$ for $0 \leq s \leq m-1$. Thus $\{X^sv_0\}_{0\leq s\leq m-1}$ are non-zero eigenvectors of c with distinct eigenvalues $\{\lambda^s\theta\}_{0\leq s\leq m-1}$. Hence the vector sequence $\{X^sv_0\}_{0\leq s\leq m-1}$ is independent over k. Therefore V equals the vector space generated by $v_0, Xv_0, \cdots, X^{m-1}v_0$. We note also that X^mv_0 is an eigenvector of c with eigenvalue $\lambda^m\theta = \theta$, hence there exists a $\gamma \in k$ such that $X^mv_0 = \gamma v_0$. Thus the assertion is proved. \square

We now suppose that λ^i is a primitive n-th root of unity. According to [1, Proposition 4.2], we know the ideal (X^n) generated by X^n is a bi-ideal. One can form a quantum group $(kC)_{n,\lambda,i} = (kC)_{\lambda,i}/(X^n)$. It is clear that a finite dimensional $(kC)_{n,\lambda,i}$ -module is simple if and only if it is simple as $(kC)_{\lambda,i}$ -module on which X^n acts by 0. By using

Theorem 3.2, Theorem 3.4 and Theorem 3.5, it is not difficult to prove the following

Proposition 3.6 Any finite dimensional simple $(kC)_{n,\lambda,i}$ -module is isomorphic to V_{θ} or $V_{\theta,0}$.

4. Quantum Yang-Baxter $(kC)_{\lambda,i}$ -module

Generally, let H be a Hopf algebra over a field k. a left quantum Yang-Baxter H-module (or left bicrossed H-module) introduced in [9,12] is a triple (V, \cdot, ρ) , where (V, \cdot) is a left H-module and (V, ρ) is a right H-comodule, satisfying the following compatibility condition

$$\sum h_1 v_0 \otimes h_2 v_1 = \sum (h_2 v)_0 \otimes (h_2 v)_1 h_1,$$

for all $h \in H$ and $v \in V$, where we write $\triangle(h) = \sum h_1 \otimes h_2$ and $\rho(v) = \sum v_0 \otimes v_1$. Denote by $_H \mathcal{Y}B^H$ the category of left quantum Yang-Baxter H-modules. It is well known that quantum Yang-Baxter modules are quite related to the solutions of the Yang-Baxter equation, low dimensional topology and knot theory. Recently, many papers are denoted to discuss these connections (c.f., e.g., [4,7,10,11]).

Suppose that H is a finite dimensional Hopf algebra over k. By [8, Proposition 4], we know the category ${}_{H}\mathcal{Y}B^{H}$ is isomorphic to the category of left modules over the Drinfel'd double D(H).

Now suppose that Hopf algebra H has a bijection antipode S, denote by H° the dual Hopf algebra. Then $(H^{\circ})^{cop}$ and H form matched a pair Hopf algebra in the sense of Majid^[6]. We denote by $D_H(H^{\circ})$ the double crossproduct $(H^{\circ})^{cop} \bowtie H$ (c.f., [7]). By the argument similar to that in [5,7,8], we have following

Proposition 4.1 Suppose that H is a Hopf algebra with bijection antipode S and H° is dense in H^{*} . Then the category $_{H}\mathcal{Y}B^{H}$ is isomorphic to the category of left rational $D_{H}(H^{\circ})$ -module, where left rational $D_{H}(H^{\circ})$ -module means that it is rational as left H° -module.

We know a few examples of Hopf algebras in which H° is dense in H^{*} when H is infinite. Now we take $H = (kC)_{\lambda,i}$, where C is finite with order m. Then we have

Theorem 4.2 Suppose that C is finite and $H = (kC)_{\lambda,i}$. Then H° is dense in H^{*} .

Proof By Proposition 2.1, we know H is a \mathbb{Z} -graded Hopf algebra with H_n spanned by $\{yX^n\}_{y\in A}$, where A=kC. Since C is finite, H_n is finite dimensional. Hence H is a locally finite graded Hopf algebra. Therefore the graded dual Hopf algebra H^g is dense in H^* [15, section 11.2]. So the assertion follows from the fact that $H^g \subset H^{\circ}$. \square

As a direct consequence of Theorm 4.2 and Proposition 4.1, we have

Corollary 4.3 Suppose that C is finite, $H = (kC)_{\lambda,i}$. Then the category $_H \mathcal{Y} B^H$ can be identified with the category of left rational $D_H(H^{\circ})$ -module.

We end this section by noting that $(kC)_{\lambda,i}$ is pointed for any cyclic group C, using the proof of [7, Proposition 11], it is easy to see that every simple object V in ${}_H\mathcal{Y}B^H$ has the form of Hv, where $\rho(v) = v \otimes y$ for some $y \in C$. A question for determining the dimension of simple objects in ${}_H\mathcal{Y}B^H$ needs further work.

Acknowledgements The authurs would like to take this opportunity to thank Prof. Zhang Pu for his constant comments.

References:

- [1] BEATTIE M, DASCALESCU S, GRUNENFELDER L. Finite conditions, co-Frobenius Hopf algebras, and quantum groups [J]. J. Alg., 1998, 200: 312-333.
- [2] BEATTIE M, DASCALESCU S, GRUNENFELDER L. Constructing pointed Hopf algebras by Ore extensions [J]. preprint.
- [3] TAKEUCHI M. Hopf algebra techniques applied to the quantum group $\mathcal{U}_q(sl(2))$ [J]. Contemp. Math., 1992, 134: 309-323.
- [4] MAJID S. Physics for algebras: non-commutative and noncocommutive Hopf algebra by a bicrossproduct construction [J]. J. Alg., 1990, 130: 17-64.
- [5] MAJID S. Quasitriangular Hopf algebra [J]. Comm. Alg., 1991, 11: 3061-3067.
- [6] MAJID S. Foundations of Quantum Group Theory [M]. Cambridge U.P. Cambridge, 1995.
- [7] RADFORD D E. Generalized double crossproducts associated with the quantized enveloping algebra [J]. Comm. Alg., 1998, 26: 241-291.
- [8] RADFORD D E. Solutions to the quantum Yang-Baxter equation and Drinfel'd double [J]. J. Alg., 1993, 161: 20-33.
- [9] RADFORD D E, TOWBER J. Yetter-Drinfel'd categories associated to an arbitrary bialgebra [J]. J. Pure and Applied Algebra, 1993, 87: 259-279.
- [10] LAME L A, RADFORD D E. Algebraic aspects of the quantum Yang-Baxter equation [J]. J. Alg., 1992, 154: 228-288.
- [11] DRINFELD V G. Hopf algebras and quantum Yang-Baxter equation [J]. Soviet. Math. Pokl., 1985, 32: 254-258.
- [12] YETTER D N. Quantum groups and representations of monoidal categories [J]. Math. Proc. Camb. Phil. Soc., 1990, 108: 261-290.
- [13] DAELE A V. An algebraic framework for group duality [J], Adv. in Math, in press.
- [14] HUMPHREYS J. Introduction to Lie Algebras and Representation Theory [M]. Springer Verley New York, 1987.
- [15] SWEEDLER M. Hopf Algebra [M]. Benjamin, New York, 1969.

群代数 Ore 扩张的量子群

李立斌1,李尚志2

(1. 扬州大学数学系,江苏 扬州 225002; 2. 中国科学技术大学数学系,安徽 合肥 230026)

摘 要: 本文讨论由 Beattie 通过群代数的 Ore 扩张所构造的量子群的中心和 Yang-Baxter 模范畴. 此外, 完全刻画了这类量子群的不可约表示.