The Radicals of Lattice-Ordered Rings *

GAO Ting

(College of Math. & Info. Sci., Hebei Normal University, Shijiazhuang 050016, China)

Abstract: We discuss the nilpotency of nil single-sided *l*-ideals of lattice-ordered rings. It is shown that for many rings satisfying specific lattice-ordered ring identities all the radicals coincide.

Key words: l-radical; l-B radical; chain condition.

Classification: AMS(2000) 06F25,16N/CLC O153.1,O153.3

Document code: A Article ID: 1000-341X(2002)02-0212-03

1. Introduction

Johnson^[5] pointed out that a nil l-ideal of a lattice-ordered ring (l-ring) may not be nilpotent. In this paper we discuss the nilpotency of nil single-sided l-ideals of l-rings. A sufficient condition for the ideal generated by a nil single-sided ideal to be nil is given.

The l-radical [1] and l-B radical [3] of an l-ring are different in general. We show that for some rings satisfying specific l-ring identities the nil radicals are equal.

In this paper, R denotes an l-ring. For nonempty subset X of R, $\langle X \rangle$ is the l-ideal of R generated by X. Suppose that A is an l-ideal of R, let $A^{(1)} = A$, $A^{(i)} = \langle A^{(i-1)}A \rangle$, $i = 2, 3, \dots$, then $\langle A^{(m)}A^{(n)} \rangle = A^{(m+n)}$, $m, n = 1, 2, \dots$. An f-ring is an l-ring in which $a \wedge b = 0$ and $c \geq 0$ imply that $ca \wedge b = ac \wedge b = 0$. An l-ring satisfying |xy| = |x||y| is usually called a d-ring. The l-radical L(R) (upper l-radical U(R) [4]) of R is the sum of all nilpotent (nil) l-ideals of R. The l-B radical B(R), the l-Q radical Q(R), and the P-radical P(R) are that defined in [3]. Clearly $L(R) \subseteq B(R) \subseteq U(R) \subseteq H(R) = \{x \in R \mid |x| \text{ is nilpotent}\}$.

In ring theory, the following Koethe problem is still open: Whether the ideal generated by a nil single-sided ideal is still nil, has not been solved yet. For *l*-rings we have the following obvious result:

Theorem 1 (1) The l-ideal of R generated by any nil single-sided l-ideal of R is nil.

^{*}Received date: 1999-01-20

Foundation item: Supported by Natural Science Foundation of Hebei Province (101094)

Biography: GAO Ting (1963-), female, born in Xinji city, Hebei province. M.Sc., currently an associate professor of Hebei Normal University.

- (2) If a nil left (right) ideal A of ring R is contained in a nil left (right) l-ideal of R, then the ring ideal generated by A is a nil ideal of ring R.
- (3) The sum of some nil left (right) l-ideals of R is still a nil left (right) l-ideal of R. Johnson^[5] indicated that nil and nilpotent are different in general. Here we show some sufficient conditions for a nil single-sided l-ideals being nilpotent. Obviously the results of Birkhoff and Pierce [1]are corollaries of our conclusions.

Theorem 2 If R satisfies descending chain condition on nil l-ideals, then every nil single-sided l-ideal A of R is nilpotent, furthermore L(R) = B(R) = Q(R) = P(R) = U(R) is nilpotent.

Proof By Theorem 1 (1) we need only to prove that A is a nil l-ideal. From the descending chain condition, there is a positive integer m such that $A^{(m)} = A^{(m+1)}$. Assume that $A^{(m)} \neq 0$, then there exists a minimal nil l-ideal J satisfying $J \subseteq A^{(m)}$ and $\langle A^{(m)}JA^{(m)}\rangle \neq 0$. Let $a \in J \cap R^+$ and $\langle A^{(m)}aA^{(m)}\rangle \neq 0$. Then $a \leq bab'$ for some $b,b' \in A^{(m)} \cap R^+$. Since A is nil, we obtain a = 0. This contradicts $\langle A^{(m)}aA^{(m)}\rangle \neq 0$, therefore $A^{(m)} = 0$. Thus A is nilpotent by $A^m \subseteq A^{(m)}$, which implies that $U(R) \subseteq L(R)$. So L(R) = B(R) = Q(R) = P(R) = U(R) is nilpotent by [3, Theorem 3.2].

Theorem 3 If R satisfies ascending chain condition on nilpotent l-ideals, then B(R) = Q(R) = P(R) = L(R) is nilpotent.

Proof By the ascending chain condition, R contains a maximal nilpotent l-ideal N. Let A be a nilpotent l-ideal of R, then N=A+N by maximality, which implies that $L(R)\subseteq N$. Therefore L(R)=N is nilpotent. It is easy to prove that B(R)=Q(R)=P(R) is nilpotent via transfinite induction and [3, Theorem 3.2], and $B(R)\subseteq L(R)$. Thus B(R)=Q(R)=P(R)=L(R).

Suppose that B is an l-ideal of R, let $l_B(x) = \{r \in B \mid |r||x| = 0\}$, $l(x) = \{r \in R \mid |r||x| = 0\}$, clearly $l_B(x)$ and l(x) are left l-ideals of R.

Theorem 4 Suppose that R satisfies ascending chain condition on nil l-ideals, then

- (1) if R has a nonzero nil l-ideal, then R has a nonzero nilpotent l-ideal.
- (2) each nil single-sided l-ideal of R is nilpotent, and U(R) = B(R) = Q(R) = P(R) = L(R) is also nilpotent.
- **Proof** (1) Suppose that B is a nonzero nil l-ideal of R, and $\langle l_B(b) \rangle$ is maximal in $\{\langle l_B(x) \rangle \mid 0 < x \in B\}$. If $bR^+ = 0$, then $\langle b \rangle^2 = 0$. If there is $r \in R^+$ with br > 0, then we derive $\langle l_B(b) \rangle = \langle l_B(br) \rangle$. Since B is nil, there exists a positive integer n such that $(br)^n = 0$ and $(br)^{n-1} \neq 0$, but $(br)^{n-1} = by$, $0 < y \in R$, whence $br \in \langle l_B((br)^{n-1}) \rangle = \langle l_B(b) \rangle$, and brb = 0, that is $bR^+b = 0$. Since every element of R is the difference of two positive elements, bRb = 0, so $\langle b \rangle^3 = 0$. The proof is complete. \Box
- (2) Let N be the maximal nilpotent l-ideal of R, A a nil l-ideal of R. If A is not contained in N, then (A+N)/N is a nonzero nil l-ideal of R/N, hence R/N contains a nonzero nilpotent l-ideal, which contradicts the maximality of N. It follows that $A \subseteq N$, namely nil single-sided l-ideals of R are nilpotent by Theorem 1, and U(R) = B(R) = Q(R) = P(R) = L(R) is nilpotent.

Theorem 5 (1) If R is commutative, then L(R) = B(R) = Q(R) = P(R) = U(R) = H(R).

- (2) If R is an f-ring, then $L(R) = B(R) = Q(R) = P(R) = U(R) = H(R) = \{x \in R \mid x \text{ is nilpotent}\}.$
- (3) If R is a d-ring, then $B(R) = Q(R) = P(R) = U(R) = H(R) = \{x \in R \mid x \text{ is nilpotent}\}.$
- (4) If R is a d-ring with an identity element, then $L(R) = B(R) = Q(R) = P(R) = U(R) = H(R) = \{x \in R \mid x \text{ is nilpotent}\}.$
- (5) If R is an archimedian l-ring in which the square of every element is positive, then L(R) = B(R) = Q(R) = P(R) = U(R) = H(R).

Proof (1) If $x \in H(R)$, then $\langle x \rangle$ is nilpotent by commutativity, which implies that $L(R) \subseteq B(R) = Q(R) = P(R) \subseteq U(R) \subseteq H(R) \subseteq L(R)$.

- (2) It follows directly from [1, Theorem 16].
- (3) Let $\bar{R}=R/B(R)$. Clearly \bar{R} is a d-ring. Suppose that $\bar{a}\in\bar{R}^+$ and $\bar{a}\bar{R}=\bar{0}$. Then $\bar{a}\in L(\bar{R})\subseteq B(\bar{R})=\{\bar{0}\}$ by [1, p45, Definition] and [3, Theorem 3.2 and 2.1]. Hence \bar{R} is an f-ring by [1, p58-59, Lemma 1 and Theorem 14]. Suppose that $x\in R$ and $x^n=0$. Then $\bar{x}^n=\bar{0}$ and $\bar{x}\in L(\bar{R})=B(\bar{R})=\{\bar{0}\}$, which implies $x\in B(R)$. This completes the proof.
 - (4) The proof is immediate from [1, p58-59, Lemma 1 and Corollary 1] and (2).
 - (5) Obviously by [2, Theorem 3.9].

Corollary The ideal generated by a nil single-sided ideal of an f-ring or a d-ring is also nil.

References:

- BIRKHOFF G, PIERCE R S. Lattice-ordered rings [J]. An. Acad. Brasil Ci., 1956, 28: 41-69.
- [2] DIEM J E. A radical for lattice-ordered rings [J]. Pacific J. Math., 1968, 25: 71-82.
- [3] GAO Ting. On the structure of a radical of lattice-ordered rings [J]. J. of Math. Res. & Expo., 1997, 17: 529-537.
- [4] GAO Ting. The l-quasi nil radical of lattice-ordered rings [J]. Northeastern Mathematical Journal, 1999, 15: 489-494.
- [5] JOHNSON D G. A structure theory for a class of lattice-ordered rings [J]. Acta Math., 1960, 104: 163-215.

格序环的根

高 亭

(河北师范大学数学与信息科学学院,河北 石家庄 050016)

摘 要: 讨论格序环中诣零单侧 *l*- 理想的幂零性,证明了许多满足特殊格序环等式的环的所有根相同.