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Abstract: In this paper, we study the optimal control problem of nonlinear differential
inclusions with principle operator being pseudomonotone. First, we give sorie properties
of solutions of certain evolution equations. Further, we prove the existence of admissible
trajectories for evolution inclusions. Then, we extend the Fillipov’s selection theorem
and discuss a general Lagrange type optimal control problem. Finally, we present an
example that demonstrates the applicability of our results.
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1. Introduction

In recent years, the optimal control problem of nonlinear evolution inclusions has at-
tracted the interest of several mathematicians, such as Papageorgiou([3]-4]), Ahmed([5]),
and Cesari. They studied the existence of optimal control for semilinear and quasi-linear
evolution inclusions. More recently, Papageorgiou([3]) considered nonlinear evolution in-
clusions with principle operator being monotone and sequentially weakly continuous by
utilizing the compactness of the set of admissible trajectories and the Cesari-Rockafellar
reduction technique, but he made the two restrictive assumptions in the sense of weak
topology. However, by replacing the upper semicontinuity with upper hemicontinuity on
the orientor field in the sense of strong topology, we may aslo solve the optimal control
problem.

The purpose of this paper is to modify some assumptions of [3] in the sense of strong
topology and investigate the existence of optimal control for nonlinear evolution inclu-
sions where the principle operator is pseudomonotone with the admissible set being the
set of strong measurable functions, which develops the case in which principle operator
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is monotone. Moreover, our results extend that of [6] governed by evolution equations
with principle operator being pseudomonotone. Our method is different from that of [3]
and [6]. Namely, generalizing Fillipov’s selection theorem, using some properties of con-
vex functions and pseudomonotone operators, we overcome the difficulty by applying the
compactness to deal with the existence of optimal control of evolution inclusions.

2. Preliminaries

Let T be a fixed positive number, I = [0,T] the time horizon, H a separable Hilbert
space, X a subspace of H carrying the structure of a separable reflexive Banach space,
and X* the dual space of X. Indentifying H with its dual, we have X — H — X~,
with all embeddings being continuous ([2]). In the literature, triple (X, H, X*) is usually
called evolution triple. By LP(X), we denote a Banach space consisting of all strongly
measurable functions from I to X with LP-norm. We denote by (.,.),((.,.)}, and (.,.)
the duality brackets for the pairs (X, X™), (L?(X), L9(X™)), and the inner product of H,
respectively; here, p > 1, and %—{- % = 1. By ||.]| (resp. |.|, ||-||«), we denote the norm of X
(resp.H, X*). Let —* and —" stand for the strong and weak convergence, respectively.
We set

WIP(I, H) ={z € L?(X)|2 € LI(X™),
. 1
lzllwsp(r,my = (l2llex) + 12| Lox))? }

where the above derivative should be understood in the sense of vector-valued distribu-
tions. Hence, W1?(I, H) is a separable reflexive Banach space, and W'P(I,H) — C(I,H)
continuously ([2]).

Let Q be a topology space, (£2,®) a measurable space, (2,0, x) a complete o~ finite
measure space, and F : @ — 2% a set-valued map. By 5% we denote the set of all
selectors of F(.) that belong to the Lebesgue-Bochner space LP(X), (1 < p < o), i.e.,

S ={u€ LP(X) : u(w) € F(w), a.e. Q},

which is nonempty if
@ — sup{|lyll,y € F(w)} € Lf,

in which case the multifunction is called L?-bounded. In addition, by
oa(e") = sup{(z,2") : 2 € 4},

we denote the support function of the set A. By Sr we denote the set of all strong
measurable selectors.

Finally, let Y be the control space with the structure of a separable Banach space, &
a parameter set. Recall that an operator A : X — X ™ is called pseudomonotone if, for
each z € X, and a sequence (2,) in X,

z, —" zin X and lim,,_, oo (A2, 2, — 2) <0
imply
(Az,z — w) < lim,_, (Az,,z, — w), with all w € X.
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In addition, an operator A : ! — X is called affine if,
A(/\W]_ + (1 - /\)Wz) = AA(wl) + (1 — A)A(W2),A € [0, 1],WI,W2 € 0.
For brevity we introduce the following notation:

Pj()(X) ={A C X : nonempty, closed (convex)},
Pi.(X) ={A C X : nonempty, compact, convex}.

3. Existence of admissible trajectories

Consider the following nonlinear, controlled evolution incusion

z(t) € —A(t,z(t)) + F(t,2(t),u(t)), ae. I, (3.1)

z(0) = 20, u € Sy )
where 4 : I x X — X* is pseudomonotone and F : I x X x Y — 2X" a set-valued map.

A function ¢ € WUP(I, H) is said to be a solution of (3.1) if, there exists a control
u€ Sy and f € sg,(,,z(,),u(,)) s.t.

{ :Eg))e:;‘:(t,w(t)) + f(t), ae. I, (3.2)

We next give some basic hypotheses on the data of the system (3.1).

Hypothesis (H;) A:Ix X — X™ is an operator s.t.
(1) t — A(t, ) is measurable;
(2) z — A(t,z) is pseudomonotone; .
(3) |A(, 2))]« < ai(t) + by|z]P~t, with a; € LE(0,T), 5, > 0,2<p < oo,% + ;1]- =1;
(4) (A(t,2) — A(t,y),2 —y) > cllz —y|lP — djz — y|*, with z,y € X, ¢ > 0,d > 0;
(5)  — A(t,z) is affine.

Hypothesis (Hz) F:I x X XY — Py.(X*) satisfies

(1) (¢t,z,u) — F(t,z,u) is graph measurable;

(2) ¢ — F(t,z,u) is w.h.c.,,ie., 2 — g, (y) is u.s.c., with each given y € X;
(3) F(t,z,u) C G(t), ae. I, with G : I — P¢(X*) being LI-bounded measurable;
(4) = — F(t,z,u) is convex.

Hypothesis (H;) z0 € H.

Hypothesis (Hy) U : 1 — P¢(Y) is measurable.

From [6], we know that the Cauchy problem (3.2) has a unique solution with each
f € L(X). Write the solution map as f — z. Next we introduce the Nemyckii operator
A: LP(X) — L9(X*), given by (Az)(t) = A(t,2(t)), with z € LP(X).
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Lemma 3.1 Under hypothsis (H; ), the solution map f — = is affine and continuous
from S into LP(I,X); moreover,

I?gflz(t)l + llellwrerm + Azl axsy < p(zol Fllzax+y)s (3.3)

where p: R, X Ry — R is a continuous function.

Proof It follows from hypothesis (H;)(5) and uniqueness of solution for (3.2) that the
solution map f — z is affine. Using hypothesis (H;)(3)-(4), generalized integration by
parts formula, Cauchy’s inequality, Gronwall’s inequality, one can show that (3.3) is true.
Next, let f, —* f in S%. Then, there exists a sequence (), satisfying

{ Ea(t) + A(t,2u(t)) = fu(t), ae., I, (3.4)

z,(0) = .

Hence we have that z,(T) —" zin H, 2, —" z in We(I, H), and Az, —™ b in
LI(X*). Further, (z,z,b) satisfies the following operator equation (see Lemma 30.5([2],
pp.776) or Theorem1 ([6]))

{ ¢+b=f(), (3.5)

z(0) = z¢,2(T) = z.

In addition, (3.4)-(3.5) and hypothesis(H;)(1)-(4) imply the operator A satisfies the Condi-
tion (M) ([2], pp.583 or Lemmal of [6]). Therefore, z is a solution of (3.2) ({2}, pp.768-770).
From hypothesis (H;)(4) and (3.2) and (3.4), we obtain that 2, —* z in L?(I,X). O

Lemma 3.2 Let X be a Banach space, (2,0, p) a complete o-finite measure space. Let
F:Q — P#(X) be L*-bounded measurable. Then, for any y € LP?(X), p > 1,% + % =1,
we have

(1) 050 (y) = Jo OF(=)(y(@))pu(dw);
(2) there exists a measurable selection f €S% s.t.

USZ,(y) = ((fv y>>

Proof It is obvious that (=, 2) — 0p(5)(2) is a Carathéordory function. Hence,

(h3)) < [ orio)((=))uld=), for ke S
on the other hand, pick out k € L} (£, R) and € > 0. Define G : @ —2% given by
G(w) = [0p(w)(y(®)) ~ ek(®), oF(a)(y(@)) + ek(w)).
By means of Corrollary 8.2.13([1]), G(-) and the set-valued map
w — H(w) = {2 € F(w)| (2,9(=)) € G(=)}

are measurable. So, using measurable selection theorem ([1], pp.308), H(-) admits a mea-
surable selection f: ) — X such that f(w) € H(w), a.e. ). Again since ¢ is arbitrary,
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the conclusion is true. O

Theorem 3.1 Assume that hypotheses (Hy)-(Hy) hold. Then, for each u € Sy, the
system (3.1) admits a solution z(.) € W1?(I,H) C C(I,H).

Proof Let u € Sy be a given element and P(f)(.) denote the solution of (3.2) corre-
sponding to f € S&. It is easy to see that S;‘(-,P(f)(-),u(-)) is closed and convex in S&.
Let p,(.) be L%bounded simple functons s.t. p,(-) —* P(f)(:) in LY(X*), and then
t — F(t,pn(t), u(t)) is measurable and L?-bounded. Hence, we can find that

. q q *
gn(:) € SF(.,,,,,(.)(.),U(.)) C 8% C LY(X™).

Owing to boundedness of S&, we may assume that g,(-) — g¢(:) in L9(X™*). Conse-
quently, it follows from hypothesis (H2)(2) and Lemma 3.2 that

_ T
({g,v)) < hmn—»oo/o TRt pu(8) () (V(2))dE

T
< /0 TR p(f)t)ue))(v())dE, v € LP(X).
Using separation theorem, one can know g € S;‘(~,P(f)(~),u(;l))’ which shows that S;‘(-,P(f)(-),u(-))
# 0. Next, define a set-valued map R(-): L9(X*) — 25G, given by
R(f) = Sp.pisyiyueyy With f € LI(XT).

It is well-known that upper semicontinuity of op()(y) on LI(X") with y € LP(X) is
equivalent to that of op()(y) on LI(X™),, provided that op(.,)(y) is convex function; here
L(X*),, is the space of L¢(X*) with its weak topology. Therefore, let f;, fo € LI(X*),y €
I’(X),X € [0,1], f —* f in LY(X*). By Lemma 3.1-3.2 and hypotheses (H;)(5) and
(H;)(2), we have

T

TROf+1-3)72)(¥) :/ TF(EAP()(e)+(1- NP (e)as(0) (U(E))dE
0
< AOR(f) )+ (1= gy (V)

and T
imy, oo 0 1, () < /U TF(e.P(5)(e) () (¥(E))dE

which means that op(.)(y) is u.s.c. on L?(X™), and hence on LY(X*),,. Thus, R(-) is u.s.c.
on LY(X*),. Applying the Kakutani fixed-point theorem ([1}, pp.87), we get g € R(g).
So, P(g)(-) € W'?(I, H) is a solution of (3.1) corresponding to u € Sy.

4. Lagrange type optimal control problem

The cost functional is defined as follows:
T
J(:c,u):/ L(t, 2(t), u(t))dt.
0
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Next, consider the existence of optimal control for the following problem with a parameter
set:

(P) min J(z,u),
subject to
{ #(t) € —A(t, z(t)) + F(t,z(t), u(t),p), ae. I, (4.1)
z(0) = zo,u € Sy,p € X.

A pair (z,u, p) is called feasible if, z is a solution of (4.1) with u € Sy and p € %. Now
we impose some general assumptions.

Hypothesis (H;) F:Ix X xY x ¥ — Pg(X*) satisfies
(1) (¢,2,u) — F(t,z,u,p) is graph measurable;
(2) (z,u,p) — F(t,z,u,p) is convex;
(3) F(t,z,u,p) C G(t), a.e. I, with G : I —> P¢(X*) being L9-bounded measurable;
(4) (z,u,p) — F(t,z,u,p) is uh.c..

Hypothesis (Hs) U : I — P, (Y) is measurable.
Hypothesis (H7) X is a convex compact subset of a metric space.

Hypothesis (Hg) L:I x X XY — R is a function s.t.
(1) (¢t,z,u) — L(t,z,u) is measurable;
(2) (z,u) — L(t,z,u) is Ls.c.;
(3) (z,u) — L(t,z,u) is convex;
(4) there exists a function h € L*(I, R) s.t.
L(t,z,u) > h(t), ae. 1.

Filliov’s selection theortem plays an important role in the proof of the existence of
optimal controls for systems governed by evolution equations. We shall generalize it into
more general case, which can solve that of evolution inclusions.

Proposition 4.1 Let X be a polish space, Y a separable Banach space, (2,0,u) a
complete o-finite measure space. Assume that F : Q@ x X — Py(Y) is Li-bounded
measurable; F(-,z) is measurable; F(w,-) is u.h.c.. Let U : § — P4(X) be measurable,
and h : Q@ — X measurable such that h(w) € F(w,U(w)), a.e. ). Then, there exists a
measurable selection u : ) — X s.t.

uw(w) € U(w), ae. Q,
h(w) € F(w,u(w)), a.e Q.

Proof Consider a multifunction G : @ — 2% given by
G(w) = {z € U(w)|h(w) € F(w,2)}.

Without loss of generality, we may assume that G(-) has nonempty images. By the def-
inition of upper hemicontinuity([1]), pp.74), one can verify that G(-) has closed images.
Define an operator ¢ : 2 x X — Q2 x X x Y, given by

o(w,2) = (@, 2, h(w)).
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We see easily that ¢(-, ) is a Carathéodory function. Meanwhile, we have
Graph(G) = Graph(U) N ¢~ }(Graph(F)).

By Lemma 8.2.6 ([1]), we obtain that G(.) is measurable. So, from measurable selection
theorem ([1], pp.308), one can get that u:  — X s.t. u(w) € G(w), a.e. 2, and hence
the above conclusion is true. O

To obtain the existence of optimal control for (4.1), we introduce a set-valued map
() : I x X x & — 2BXX" "given by

e(t,z,p) = {(z%,2) € R x X*|2* > L(t,z,u),z € F(t,z,u,p),u € U(t)}.
Theorem 4.1 Under hypotheses (H; ), (H;), and (H; )-(Hg), the problem (P) has at least
an optimal pair (z,u) € W'?(I,H) x Sy.

Proof Let (z,,u,) be a minimizing sequence. Then, there exist corresponding sequences
(p=) and (fr) such that (z,,u,, pn) is feasible. Using hypothesis (Hs)(3), we may assume
that f,, —" f in L?(X™). Utilizing Mazur’s Lemma, we acquire that

fi() = Bipragifir;(0) —° f() in LUXT), Ziyray; = 1,045 2 0.

Write simply,

zj() = Birogizig(4), ui(0) = Tizraujuigs (1),

pi = Bix104ipip ¥5() = L{ 25(), u5(-)),

Yo(t) = lim;_, ¥;(t), a.e. I. i
Therefore, by virtue of Lemma 3.1, we know that z;(-) —* z(-) in L?(I,X); hence 2
is a solution of (3.2) with f €S. Further, we may assume that f;(t) —* f(¢) in X~
ae. I, z;(t) —* 2(t) in X, ae.], and p, — p in I. Observe that hypothesis (Hs5)(2)
yields f;(t) € F(t,z;(t),u;(t),p;), a.e. I, j = 1,2,---. Next we show that (f(t),vo(t)) €
e(t, z(t), ), ae. I. Fix ty € I and z € X. Due to hypothesis (Hg), we can assume that
uj(t) —* u in Y. According to hypotheses (Hs)(4)and (Hg)(2), we have that, for any
g’ > 0, as j large enough,

(fi(t0): 2) < OF(ra,z;00) 50010 (2) < TF(t0 2(t0).0)(2) €',
Bilto) = Llto, 25(to), uj(to)) > Llto, 20(t), w) -

By the separation theorem, as j — oo, we can get that

(f(to),%o(to)) € €(to,, z(to), p)-

Since t; is arbitrary in I, (4.2) is true. Again using Proposition 4.1, we get a measurable
selection u € Sy s.t.

f(t) € F(t,z(t),u(t),p), vo(t) > L(t,z(t),u(t)) > h(t), ae. I.
Besides this, hypothesis (Hg) and Fatou’s Lemma yield that

/ dolt)dt = / lim,_, ¥ t)dt<11mJ_,oo/ bt < lim J(z;,u).
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So, (z,u) € W1P(I, H) x Sy is the desired optimal pair.
Example

Let be Q bounded open domain in R™ with smooth boundary I'=0Q, and T a fixed
positive number with I = [0,7]. Consider a control system governed by the following
parabolic boundary-initial-value problem with a parameter set:

J(z,u) = /OT/QZ(t,z,z(t,z),u(t,z))p(dz)dt — inf = m, (Q)
subject to

%z(t,z) € —Blajcm (1)1 Au(t, 2,0(2(t, 2))) + Folt, z,2(t, 2), u(t, 2), p), on I x 9,

Dﬂ:c(t,z) =0,onIxI, |f]<m-1,
z(0,2) = zo(z), on Q,
|u(t, z)| < K(t), a.e. I,K(-) € L}(I,R).

where 6 (z) = {DPz,|B] < m}. We choose spaces
1 1
X = WJ’LJ'(Q),H = Lz(ﬂ),X* = W—-m,Q(Q),p > 1’1_) + E - 1.

Note that the hypothesis of A, is the same as that of [6].

Let Fo: I xQ x Rx Rx R— P¢(R) be a set-valued map s.t.

(1) (t,2z) — Fo(t,z,z,u,p) is graph measurable;

(2) (z,u,p) — Fy(t,z,z,u,p) is convex and u.h.c.;

(3) Fo(t,z,z,u,p) C G(t,2), a.e. I, with G(.,.): I x  ~— P¢(R) being L?-bounded
measurable;

Let £: I X Rx R — R = RU{+oo} be an integrand s.t.

(1) (¢, z,2,u) — £(t, z,z,u) is measurable;

(2) (z,u) — £(t, z,z,u) is l.s.c. and convex;

(3) h(t,2z) < {(t,z,z,u), a.e. I, with h € L}(I x Q).

One can check that hypotheses (H;)-(Hs) hold. Rewrite the problem (Q) as the ab-
stract form equivalent to the problem (P). Then, Theorem 4.1 shows that the problem
(Q) has at least an optimal pair (z,u) € W'2(0,T; LE(Q))NLP(0,T; Wy"P(2)) x Syr.
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