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Abstract: In this paper, we investigate super-uniforinly elliptic diffusions {X;,t > 0}
with its branching mechanism given by (z) = v2**?(0 < 8 < 1), and, when the initial
value Xo(dz) is one kind of invariant measures of the underlying processes, we show that
if dimension d satisfies 8d < 2, then the random measures X, will converge to the null in
distribution and if 8d > 2, then X, will converge to a nondegenerative randomn measure
in the same sense.
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1. Introduction and main results

Let £ be the uniformly elliptic diffusion processes generated by the infinitesimal dif-
ferential operator L, which is defined as follows:

1 & 0(2) &, \0f(2)
Lf(z) - Ei,jzzl a‘j(x)aziazj + ;b‘(z) z; ]

where the coefficients a;;(z)(¢,j = 1,---,d) and b;(z)(¢ = 1, - - -, d) satisfy uniformly elliptic
conditions. Additionally, we assume that the processes satisfy the following:

Condition (H) ,
(H1) The transition function p(¢,z,y) of { satisfies that : p(t,z,y) > 0 and M;t™2

_d _d
exp(—c1(|ly—z|?/t))— Mat~ 2+ exp(—ca(ly—2|?/t) < p(t,2,y) < Mt~z exp(—a(|ly—-z|*/t))
for Vt > 0,z,y € R%, where M, My, M2, a,c1,c, and r are all positive constants.
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(H2) There exist some invariant measures of £; which have the following form: p(dz) =
m(z)dz, where dz = A(dz) is the Lebesgue measure and 0 < m(z) < P for some constant
P. Without loss of generality, we suppose that P > 1.

The existence of the process §; can be found in [1], [2] and [3].

Let M,(R?) be the set of all Radon measures on R? and such that [ v(dz) <

1
T+ =P
oo for p > d. Denote by pC(R?) (resp. pC.(R?)) the space of positive continuous functions
(resp. with compact support) on R¢. The so-called super-uniformly elliptic diffusions are
the Markov processes {X;, P*} wEM, (RY) with its Laplace functionals given by

Ete~ X = =) - f € pC.(R?), n € M,(R?),

where u; is the unique mild solution of the following differential equation

du(t,z)
ot

= Lu(t,2) — ¢(z,u(t,z)), u(0,z) = f(z), (1)

where L is the infinitesimal operator of &, and (2, z) = 72'1# is called branching mech-
anism. The equation (1) is equivalent to the following integral equation

wle) = Bof = [ Proahlua)ds (2)

For the existence of X;, we refer the reader to [4-7].
Our main results are:

Theorem 1.1 Let & satisfy the condition (H), X: be the corresponding superprocesses
with branching mechanism given by ¢(z) = v2!*#, and X,(dz) = p(dz) be an invariant
measure of €. If dimension d of the underlying space such that d > 2, then X, will

. d
convergence to a nondegenerative random measure Xo,, namely, X¢ — X, as t — 00.

Theorem 1.2 Assume £ and X, be as in Theorem 1.1. If fd < 2, then X; 4,0 as
t — oo0.
As we know, the general form of branching mechanism of superprocesses is that

P(z,2) = b(z)z + ()2 + / (e™* — 1 4 uz)n(z,du),z € R?, 2> 0, (3)
U
where n(z, du) is a kernel from R¢ to (0, 00) and b(z), ¢(2) > 0 and [;°(uAu?)n(z,du) > 0
are all bounded Borel measurable functions on R%. For this, we have

Corollary 1.3 Under the conditions of Theorem 1.1 with ¢(z, z) given by (3). If¢(z,z) >
1248 and Bd < 2, then X, 4, 0ast — 0.

Remark 1 Theorem 1.1 and 1.2 extend the results in [3], while the later only discuss the
special case § = 1. This note reveals in some sense that the joint influence of dimension
of the underlying space and branching mechanism on the properties of superprocesses.

Remark 2 The significance of Corollary 1.3 can be seen from a simple example, e.g., if
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Y(z,2) = 1122 1A + 4,221P2 and B; # s, then ¥(z,z) can’t be expressed as the form of
148
vz

2. Proof of main results

In order to prove the main results, we first give two Lemmas.

Lemma 2.13% If p > d, then A(dz) € M,(R?), and p(dz) = m(z)dz = m(z)A\(dz) €
M,(R?).

Lemma 2.2 Let p(t,z,y) be the transition probability density function of {;, then for
arbitrary d > 1, we have

'/I|>(tlnt)l/2 P(t,z,O)#(dz)__,O as t — oo. (4)

Proof We prove the Lemma by the method taking from [8]. Noting the hypothesis (H1),

it is sufficient to prove that f\/th_t femoT ,u(dr) — 0 ast — oo, where ji(r, r+a) denotes
the p(dz)-measure of the annulus with inner radius » and outer radius r + a. Since for
sufficient large z, e < cl(ci):z:“"‘1 ( here and later, we use ¢ to denote different constants,
and ¢(-) to denote the constant depending on -). This implies that

e 4 _ r__ d+1 -
1 <
/“Mt ze A(dr) < co(d a)/t lt\/f/r p(dr)

< ada) 3 (V2D )a(ak, 244)),

k=K,

for sufficient large ¢, where K; = [log,(v/tInt)], and [-] denotes "greatest integer in”. From
the hypothesis (H2), we know that f([2,2%+1]) < c3(d, P)2*, where P is the constant in
(H2). Therefore, c3(d, @) [ 75 Vt/r¥t1 a(dr) < eq(d, @, P)/+/Int holds for sufficient large
t. This implies the conclusion.

Proof of Theorem 1.1 For Vf € pC.(R%), the Laplace functional of X; reads as
E* exp(—(f, X:)) = exp(—(Vk, p)), where

t
‘/t = Ptf - 7/ Pt—a(Val+ﬁ)d3a (5)
0

in which P, is the semigroup of §;. Integrating equation (5) with the invariant measure g,
we conclude that

Vior) = (fush = [ V3, s, (6)

Ast — oo, from (6) we know that (V;, ) decreases with lower bound 0, therefore V. (f) =
limg 00 (Vi, 1) exists. Thus in order to prove the result, it is sufficient to prove that
Voo(f) # 0 for some f € pC.(R%). In particular, it is sufficient to prove the conclusion for
some indication function of some compact set in R9.
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Formula (5) implies that 0 < V; < P,f. By equation (6) we have

Vot > (o) =7 [ (Bea( BT, s, (7)

(21,22, +,24) € R®, 22 + 224 -+ 22 < k} is a closed ball in R?. From Jensen inequality

we obtain (P, f(2))1*8 = (E.f(£,))'P < E,f11B(¢,) = P,f*+#(z). From this inequality
and condition (H1), we have

Let f(z) = I14(z), where 14(z) is the indication function of A, and A = {z|z =

[ it mas < [ (Rt mas
< /01 ds /1;4 p(dz)P, f1+P(z)
— 1+ /Ul ds -/R“ p(d:c)/Rd La(y)p(s,z,y)dy

1
Scs(d,M,P)l”ﬂ/ dS/ la(y)dy
0 Rd

_cs(d, M, P)mikd
()

= cg(d, M, P, k)*¥8, (8)

I%_;L_g—) is the volume of the ball A. Furthermore, under the condition of (H1) , by
2

Jensen inequality and 8d > 2, we find that

t t
/ (Val+ﬂ’ﬂ')d3 S/ dS/ ;L(d:c)(/ Ms_d/ze—7|y—z’211A(y)dy)1+ﬁ
1 1 R4 Rd
t (4]
S/ ds/ u(dm)/ M1+ﬁll+ﬂlA(y)s_g“%g‘@l!/—wl’dy
1 RY R
1+/4 t 8d
< er(a, M, P)l / ds/“lA(y)S > dy
1 R
2

Bd -2
S CS(d)aaMaP7khB)ll+ﬂ' (9)

where

< cs(d, o, M, P, k) (1 t1=5)+h

From equation (7), (8) and (9), we obtain

Vaol£) 2 (fom) = 7 Jim [ (V295 )

1 t
=1(1a,p) - ‘y/ (VI u)ds — 5 tlim (VB L)ds
v —0

1
> 1p(A) = MFPy(cq + cg).

It is not difficult to see that if we choose | < (_Y—(‘c%%j)lﬁ, then Vo (f) > 0. This completes
the proof.
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Proof of Theorem 1.2 For Vf € pC.(R?), the Laplace functional of X; can be expressed
as E* exp(—(f, X:)) = exp(—(V;,u)), where V; is the solution of the equation V; = P, f —
J3 P—s(¥(V,))ds. From [9] we know that, in order to prove this Theorem, it’s sufficient
to show that lim,_,o (Vi, 1) = 0.

Set Sy := {z € R?,|2| < ((k + t)In(k + t))!/?} with k being a positive constant. From
[3] and Lemma 2.1 and 2.2 we know that [g Vi(z)u(dz)—0 as ¢ — co. It remains to
prove [g Vi(z)u(dz)—0 as t — oo. For the sake, we introduce the function W(t), which
is the solution of the following equation

{ SW(t) = -3WHA() + THW(E) + 9(Dh(2), (10)
W(0) = x5y Js, f(2)p(dz).
Here P is the constant in condition (H) and
M(0) = 5oy = o (B + )k +0) 4%, () = — 3 [ Vitehulde)
TS T e r SWE g Js THEIHEE)
It is easy to show that [J° g(t)dt = co. Now putting
1 1
20 = wnsap: 2O = WP )
From (10) and (11) we see that Mﬁtﬂ = %h(t)ﬁ - ,Bg(t)Z(t)H'%, ie.,
Z(t) = 2(0) + g}/:h(s)ﬁds - ﬂ/otg(s)Z(s)H%ds. (12)

Noting that [°A(t)?dt = c10 [5°((K + t)In(k + t))"P4/2dt = oo holds if and only if
Bd < 2. If sup, Z(t) < oo, then the right side of (12) would be infinity and the left hand

would not be so. This is absurd, therefore Z(t) ‘=% co. It follows that W(t)A(S:) =3 0.
Now we aim to show that

[, Vi@uda) < WXS).

Noting that when ¢t = 0, the above inequality is strictly equal, it is sufficient to show
that iffslo Vio(2)pu(dz) = W(tg)A(St, ), then

d

%/S‘ Ve(z)pu(de)le=t, < az(W(t),\(st))h:to,

First of all, we have %W(t)/\(St) = —’YV;’,; :+B + g(t).
Next, noting that p(dz) is an invariant measure of {;, therefore [p. Vt(z)pgdz) =
(F, ) =7 Jo VP, u)ds. Tt follows that g ([s, Vi()u(de)+[s Vi(z)u(de)) = -y (VI ).

That is  [5, Vi(2)u(de) = g(t) - 1V, 1) < o(t) — 7 s, ViP(e)u(de). Thanks of
Hoélder inequality, |m(z)] < P and P > 1, we arrive at

[, ) > prpeaat [ viauan)e.
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Finally, it is easy to see that

5 [ Voo emsy < alte) = FW () PPA(S) = WONSulewt

This completes the proof.

Proof of Corollary 1.3 In equation (2), it is ease to find that if 9(-, ) becomes bigger,
then the solution will become smaller. From this fact we know that the Corollary holds.
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—EKB—BHEY BT IR EE

B ool
(FEECER R A MO R, T35 REAT 210003)
B B FIXWFRTOAFEN ¢(z,2) = 12P(0 < 8 < 1) BRI BT 86T
B, UIIRE Xo(de) AT BRMFEXABMER, ST YHZEEH %L Bd < 20,

ggﬂ Xe AT 0 WEE, % Bd> 28t X, MRS ARST— N ERILAREL
;g
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