On Lins, A., W. de Melo and Pugh C.C.'s Conjecture (Part II) *

CHEN Yong, CHEN Xiu-dong
(Dept. of Appl. Math., Dalian University of Technology, Liaoning 116024, China)

Abstract: In this paper, we give a affirmative answer to Lins.A., W.de Melo and pugh c.c.'s conjecture^[1] for F(x) = -F(-x).

Key words: limit cycle; state function.

Classification: AMS(2000) 34C25,34A12,34K15/CLC 0175.13

Document code: A Article ID: 1000-341X(2002)03-0368-03

For Lienard's equation $\ddot{x} + f(x)\dot{x} + x = 0$ or the equivalent system

$$\dot{x} = y - F(x), \quad \dot{y} = -x \quad (F(x) = \int_0^x f(\xi) d\xi),$$
 (*)

there were a lot of papers^[2,3] which studied (*) to have some limit cycles. In 1977, Lins. A., W. de Melo and Pugh C. C. put forward the conjecture as follows:

When $F(x) = \sum_{i=1}^{N} a_i x^i (N = 2n + 1, 2n + 2)$, system (*) has at most n limit cycles.

In this paper, we proved that the conjecture for F(x) = -F(-x) is an affirmative proposition. The analogy between the research methods of zero points of functions in calculus and the closed orbit of planar system is well-known to us. For example, the Poincare-Bendixson's annular region theorem corresponds to the following conclusion: if a continuous function $\Phi(x)$ satisfies $\Phi(a)\Phi(b) < 0$, then $\Phi(x) = 0$ has at least one real root in (a, b). By the point transformation method the conclusion that system (*) has at most n limit cycles corresponds to conclusion that: $\Phi(x) = 0$ has at most n positive real roots.

We always suppose that f(x) is continuous even function on $(-\infty, +\infty)$, and f(x) satisfies the conditions of the existence and uniqueness theorem of the solutions for (*). For system (*), we make the Filippov's transformation $z = \int_0^x f(\xi) d\xi = \frac{x^2}{2}$. Thus, the trajectories of (*) on the region $0 \le x \le +\infty$ of right-half plane (x, y) and $-\infty \le x \le 0$ of left half plant (x, y) are transformed into integral curves of equation

$$\frac{\mathrm{d}z}{\mathrm{d}y} = F_i(z) - y. \tag{1}$$

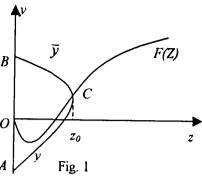
Biography: CHEN Yong (1960-), male, Ph.D. Candidate.

^{*}Received date: 2000-11-30

On $0 \le z \le +\infty$ of plane (z,y), where $F_1(z) = F(\sqrt{2z}), F_2(z) = F(-\sqrt{2z})$.

Unless special explanation, we always suppose that the function $F_i(z)(i=1,2)$ are continuously differentiable with respect to z and are equal to zero at z=0.

Obviously, we have [2,3]; the trajectory of (i)(i=1,2) passing through point $((z_0,F_i(z_0))$ on the curve $y=F_i(z)$ must intersect y-axis at two points A and B. Where either, $y_A \leq 0$, $y_B > 0$ or $y_A < 0$, $y_B \geq 0$ and $F_1(z) = -F_2(z)$. Writing $F(z) = F_1(z)$, we present a state function as follows. Making energy function $\lambda = (z,y) = \frac{(y-F(z))^2}{2} + z$. On the trajectory \widehat{ACB} of (*) passing $(z_0,F(z_0))$ (see figure 1)[5], we can easily obtain



$$\frac{\mathrm{d}\lambda}{\mathrm{d}z} = (y - F(z)(\frac{\mathrm{d}y}{\mathrm{d}z} - F'(z)) + 1 = (y - F(z))\frac{\mathrm{d}y}{\mathrm{d}z} - F'(z)(y - F(z)) + 1
= (y - F(z))/(F(z) - y) - F'(z)(y - F(z)) + 1 = -F'(z)(y - F(z)).$$
(2)

Thus, we have

$$\int_{\widehat{ACB}} d\lambda = \int_{\widehat{AC}} d\lambda + \int_{\widehat{CB}} d\lambda
= \{ [(F(z_0) - F(z_0))^2 / 2 + z_0] - [(y_A - 0)^2 / 2 + 0] \} +
\{ [(y_B - 0)^2) / 2 + 0] - [(F(z_0) - F(z_0))^2 / 2 + z_0] \}
= (y_B^2 - y_A^2) / 2$$
(3)

$$\int_{\widehat{AC}} d\lambda + \int_{\widehat{CB}} d\lambda = \int_0^{z_0} F'(z)(y - F(z))dz - \int_{z_0}^0 F'(z)(\bar{y} - F(z))dz$$

$$= \int_0^{z_0} F'(z)(\bar{y} - y)dz. \tag{4}$$

By (3) and (4), we define the state function

$$\Phi_1(z_0) = \int_{\widehat{ACB}} d\lambda = \int_0^{z_0} F'(z)(\bar{y} - y)dz = (y_B^2 - y_A^2)/2.$$

By $\Phi_1(z_0)$, we obtain

Property 1^[4] The State function $\Phi_1(z_0)$ is continuous; if there exist numbers $0 < z_1 < z_2$ such that $\Phi_1(z_1)\Phi_1(z_2) < 0$, then $\Phi_1(z_0) = 0$ has at least one real root in (z_1, z_2) , that is system (*) has at least one limit cycle.

Property 2^[4] If $F'(z) \equiv 0$, then (0,0) is a center; if $F'(z) \geq 0$, $(F'(z) \leq 0)$, $F'(z) \neq 0$, then (0,0) is a stable (unstable) focus; it is a necessary condition for ensuring system (*) to have limit cycle, in which F(z) is the change sign.

Theorem If $\Phi_1(z_0) = 0$ has at most n positive real roots on $(0, +\infty)$, then system (*)

has at most n limit cycles.

Proof For $\Phi(z_0) = \int_{\widehat{AGR}} d\lambda = \int_0^{z_0} F'(z)(\bar{y} - y) dz$. Since $\bar{y} - y > 0$ on (0, z)

$$F(z) = \sum_{i=1}^{N} a_i (\sqrt{2z})^i$$
, on the other hand $F(x) = -F(-x)$, $a_{2i} = 0$ $(i = 1, 2, \dots, n+1)$

$$F'(z) = \left(\sum_{i=0}^{n} a_{2i+1}(\sqrt{2z})^{2i+1}\right)' = \frac{1}{\sqrt{2z}} \sum_{i=0}^{n} 2^{i}(2i+1)a_{2i+1}z^{i}.$$

Therefore, by integral mean value theorem there is ξ such that

$$\Phi_1(z) = \frac{1}{\sqrt{2\xi}}(\bar{y}(\xi) - y(\xi)) \sum_{i=0}^n 2^i (2i+1) a_{2i+1} z^i = \frac{1}{\sqrt{2\xi}}(\bar{y}(\xi) - y(\xi)) \int_0^{z_0} p_n(z) dz,$$

where $p_n = \sum_{i=0}^n 2^i (2i+1) a_{2i+1} z^i$, it has at most n positive real roots on $(0, \infty)$ by Gauss theorem. We know that $\int_0^{z_0} F'(z) (\bar{y} - y) dz$ changes sign at most n times, therefore system (*) has at most n limit cycles. \square

In [6], we gave an example of the conjecture. In this paper, we continue to study the conjecture and give an affirmative answer of the conjecture for the case F(x) = -F(-x). Next work we will study the conjecture in general case.

References:

- [1] LINS A., W. de Melo, PUGH C C. On Lienard equation [J]. Lect. Notes in Math., 1977, 597: 335-357.
- [2] ZHANG Zhi-fen, etc., Qualitative Theory of Differential Equation [M]. Scientific Publishers, 1985. (in Chinese)
- YE Yan-qian. Qualitative Theory of Polynomial Differential Systems [M]. Shanghai Scientific
 & Technical Publishers, 1995. (in Chinese)
- [4] CHEN Xiu-dong. Zero point of state function and limit cycle [J]. Ann. of Diff. Equ., 1983, 1(2).
- [5] CHEN Xiu-dong. Properties of characteristic function and existence of linit cycles of Lienard's equation [J]. China. Ann. of Math., Ser. B., 1983, 4.
- [6] CHEN Xiu-dong, SUN Li-hua. On A. Lins, W. de Melo and C. C. Pugh's Conjecture (Part I) [J]. J. of Math. Res. & Expo., 1985, 5(3).

关于 Lins, A., W. de Melo 和 Pugh C.C. 的猜想 (II)

陈 勇, 陈 秀 东

(大连理工大学应用数学系, 辽宁 大连 116023)

摘 要: 在本文中,我们证明了在 F(x) = -F(x) 条件下, Lins, A., W. de Melo 和 Pugh C.C. 的猜想是成立的.