Some Equivalent Conditions for Block Independence of Reflexive Inner Inverse of Block Matrix *

WANG Yi-ju^{1,2}

- (1. School of Math. & Comp. Sci., Nanjing Normal University, Jiangsu 210097, China;
- 2. Insitute of Operations Research, Qufu Normal University, Shandong 273165, China)

Abstract: The definition of block independence in generalized inverse of block matrix was introduced in [1]. In this paper, we give some equivalent conditions for two $m \times n$ matrices being block independent in reflexive inner inverse.

Key words: Reflexive inner inverse; rank; block independence.

Classification: AMS(2000) 15A04,15A09,15A18/CLC O151.21

Document code: A Article ID: 1000-341X(2002)03-0375-05

1. Introduction

Let $A \in C^{m \times n}$ and consider the following four Moore-Penrose equations:

$$AGA = A, (1)$$

$$GAG = G, (2)$$

$$(AG)^* = AG, (3)$$

$$(GA)^* = GA. (4)$$

Suppose $\mathcal{J} = \{i, j, \dots, k\}$ is a nonempty subset of $\{1, 2, 3, 4\}$, then a matrix G is said to be a \mathcal{J} -inverse of A if G satisfies equation (i) for each $i \in \mathcal{J}$. The set of all \mathcal{J} -inverse of A is denoted by $A^{\{\mathcal{J}\}}$ and its any element is denoted by $A^{\mathcal{J}}$. $\{1\}$ -inverse, $\{1, 2\}$ -inverse and $\{1, 2, 3, 4\}$ -inverse are also called *inner inverse*, reflexive inner inverse and M-P (Moore-Penrose) inverse of A, and are denoted by A^{-} , A^{G} and A^{+} , respectively.

Throughout this paper, all our matrices will be over the complex number field C. For matrix $A \in C^{m \times n}$, the symbols $rk(A), \mathcal{R}(A), \mathcal{RS}(A)$ denote the rank, the range (column space), the row space of A, respectively.

In the following, we suppose $\mathcal{J} = \{i, j, ..., k\}$ is a nonempty subset of $\{1, 2, 3, 4\}$. The following definition was given by Wang in [1].

Foundation item: Supported by NNSF of China (10171055) and NSF of Shandong Province (Q99A11) Biography: WANG Yi-ju (1966-), male, Ph.D., Professor.

^{*}Received date: 1999-06-07

Definition 1.1 Two $m \times n$ matrices B and C are block independent in \mathcal{J} -inverse if there exist $B^{\mathcal{J}} \in B^{\{\mathcal{J}\}}$, $C^{\mathcal{J}} \in C^{\{\mathcal{J}\}}$ such that

$$\left(\begin{array}{cc} B^{\mathcal{J}} & C^{\mathcal{J}} \end{array}\right) \in \left(\begin{array}{c} B \\ C \end{array}\right)^{\{\mathcal{J}\}} \quad \text{ and } \quad \left(\begin{array}{c} B^{\mathcal{J}} \\ C^{\mathcal{J}} \end{array}\right) \in \left(\begin{array}{c} B & C \end{array}\right)^{\{\mathcal{J}\}}.$$

It should be noted that the definition of block independence of generalized inverse of block matrix in another meaning was given by Frank J.Hall etc in [2,3], and the difference between these two kinds of definitions was pointed out in [1]. The necessary and sufficient conditions for two $m \times n$ matrices being block independent in reflexive inner inverse was also given in [1]. In the next section, we would give some equivalent conditions for two $m \times n$ matrices being block independent in reflexive inner inverse.

2. Main results

Theorem 2.1^[4] For $T \in C^{m \times n}$, denote $E_T = I - TT^-$, $F_T = I - T^-T$, then the following equations hold.

$$rk(B \quad C) = rk(B) + rk(E_BC) = rk(C) + rk(E_CB),$$

$$rk\left(egin{array}{c} B \ C \end{array}
ight) = rk(B) + rk(CF_B) = rk(C) + rk(BF_C).$$

Theorem 2.2 Let $B, C \in C^{m \times n}$, then the followings are equivalent.

- (1) B, C are block independent in reflexive inner inverse;
- (2) rk(B+C) = rk(B) + rk(C);
- (3) There exist nonsingular matrices P and Q such that

$$B = P \left(\begin{array}{ccc} I_B & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right) Q, \qquad C = P \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & I_C \end{array} \right) Q,$$

where I_B and I_C are identity matrices of whatever size is appreciate to the rank of B and C, respectively;

- (4) $\mathcal{R}(B+C) = \mathcal{R}(B) + \mathcal{R}(C)$;
- (5) $\mathcal{RS}(B+C) = \mathcal{RS}(B) + \mathcal{RS}(C)$;
- (6) There exist $B^G, C^G \in C^{n \times m}$ such that

$$B^{G}C = 0$$
 $BC^{G} = 0$ $C^{G}B = 0$ $CB^{G} = 0$;

(7)
$$rk(B \ C) = rk(B) + rk(C)$$
, $rk\begin{pmatrix} B \\ C \end{pmatrix} = rk(B) + rk(C)$;

- (8) $\mathcal{R}(B) \cap \mathcal{R}(C) = \{0\}$, $\mathcal{RS}(B) \cap \mathcal{RS}(C) = \{0\}$;
- (9) $rk(E_BC) = rk(C)$, $rk(CF_B) = rk(C)$;
- (10) $rk(E_CB) = rk(B)$, $rk(BF_C) = rk(B)$.

Proof The equivalence between (2),(3),(4),(5),(6) can been seen in Theorem 2.1 in [5].

(6) \Rightarrow (1): If there exist $B^G, C^G \in C^{n \times m}$ such that

$$B^G C = 0$$
, $BC^G = 0$, $C^G B = 0$, $CB^G = 0$,

it can easily be verified that:

$$\left(\begin{array}{cc} B^G & C^G \end{array}\right) \in \left(\begin{array}{c} B \\ C \end{array}\right)^{\{1,2\}} \quad \text{and} \quad \left(\begin{array}{c} B^G \\ C^G \end{array}\right) \in \left(\begin{array}{c} B & C \end{array}\right)^{\{12\}}.$$

So B, C are block independent in reflexive inner inverse.

 $(1) \Rightarrow (6)$: By

$$\left(\begin{array}{cc} B^G & C^G \end{array}\right) \in \left(\begin{array}{c} B \\ C \end{array}\right)^{\{1,2\}},$$

one has

$$\left(\begin{array}{cc} B^G & C^G \end{array}\right) \left(\begin{array}{c} B \\ C \end{array}\right) \left(\begin{array}{cc} B^G & C^G \end{array}\right) = \left(\begin{array}{cc} B^G & C^G \end{array}\right).$$

A short computation leads to

$$B^G B C^G = 0$$
 and $C^G C B^G = 0$.

Left-multiplying the first equality by B, and the second equality by C, we obtain $BC^G = 0$ and $CB^G = 0$. Similarly, by

$$\left(\begin{array}{c} B^G \\ C^G \end{array} \right) \in \left(\begin{array}{cc} B & C \end{array} \right)^{\{1,2\}},$$

one has $B^GC = 0$ and $C^GB = 0$.

(7) \Leftrightarrow (8): By $\mathcal{R}(B \ C) = \mathcal{R}(B) + \mathcal{R}(C)$, we know that $rk(B \ C) = rk(B) + rk(C)$ if and only if $\mathcal{R}(B) \cap \mathcal{R}(C) = \{0\}$. By

$$\mathcal{RS}\left(egin{array}{c} B \\ C \end{array}
ight) = \mathcal{RS}(B) + \mathcal{RS}(C),$$

we have

$$rk\left(egin{array}{c} B \ C \end{array}
ight) = rk(B) + rk(C) ext{ if and only if } \mathcal{RS}(B) \cap \mathcal{RS}(C) = \{0\}.$$

(3) \Rightarrow (7): If there exist nonsingular matrices P, Q, such that

$$B = P \left(egin{array}{ccc} I_B & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{array}
ight) Q, \qquad C = P \left(egin{array}{ccc} 0 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & I_C \end{array}
ight) Q,$$

then

and

 $(7) \Longrightarrow (2)$: First, there exist nonsingular matrices P_1, Q_1 such that

$$P_1BQ_1=\left(\begin{array}{cc}I_B&0\\0&0\end{array}\right),$$

and we denote $P_1CQ_1 = \begin{pmatrix} C_1 & C_2 \\ C_3 & C_4 \end{pmatrix}$, where the orders of matrices C_1, C_2, C_3, C_4 are determined by the blocks in P_1BQ_1 , respectively.

Since

$$rk(B \mid C) = rk[P_1(B \mid C) \begin{pmatrix} Q_1 & 0 \\ 0 & Q_1 \end{pmatrix}] = rk \begin{pmatrix} I_B & 0 & C_1 & C_2 \\ 0 & 0 & C_3 & C_4 \end{pmatrix} = rk(B) + rk(C),$$

we know that $rk(C_3 \ C_4) = rk(C)$, and there exist nonsingular matrix P_2 such that

$$P_2P_1BQ_1=\left(egin{array}{cc} I_B & 0 \ 0 & 0 \end{array}
ight) \quad ext{and} \quad P_2P_1CQ_1=\left(egin{array}{cc} 0 & 0 \ C_3 & C_4 \end{array}
ight).$$

Since

$$rk\left(egin{array}{c} B \ C \end{array}
ight)=rk\left[\left(egin{array}{cc} P_2P_1 & 0 \ 0 & P_2P_1 \end{array}
ight)\left(egin{array}{c} B \ C \end{array}
ight)Q_1
ight]=rk\left(egin{array}{cc} I_B & 0 \ 0 & 0 \ 0 & 0 \ C_3 & C_4 \end{array}
ight)=rk(B)+rk(C),$$

it holds that $rk(C_4) = rk(C)$ and there exists nonsingular matrix Q_2 such that

$$P_2P_1BQ_1Q_2=\left(egin{array}{cc}I_B&0\0&0\end{array}
ight)\quad {
m and}\quad P_2P_1CQ_1Q_2=\left(egin{array}{cc}0&0\0&C_4\end{array}
ight).$$

Furthermore, there exist nonsingular matrices P_3 and Q_3 of order n-rk(B) such that

$$P_3C_4Q_3 = \left(\begin{array}{cc} 0 & 0 \\ 0 & I_C \end{array}\right)$$

— 378 **—**

and

$$\begin{pmatrix} I_{B} & 0 \\ 0 & P_{3} \end{pmatrix} P_{2}P_{1}BQ_{1}Q_{2} \begin{pmatrix} I_{B} & 0 \\ 0 & Q_{3} \end{pmatrix} = \begin{pmatrix} I_{B} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

$$\begin{pmatrix} I_{B} & 0 \\ 0 & P_{3} \end{pmatrix} P_{2}P_{1}CQ_{1}Q_{2} \begin{pmatrix} I_{B} & 0 \\ 0 & Q_{3} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & I_{C} \end{pmatrix}.$$
Let $P = \begin{pmatrix} I_{B} & 0 \\ 0 & P_{3} \end{pmatrix} P_{2}P_{1}$ and $Q = Q_{1}Q_{2} \begin{pmatrix} I_{B} & 0 \\ 0 & Q_{3} \end{pmatrix}$, then
$$PBQ = \begin{pmatrix} I_{B} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \text{and} \quad PCQ = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & I_{C} \end{pmatrix}.$$

Finally, the equivalence between (7), (9) and (10) can easily be seen by Theorem 2.1. This completes the proof.

References:

- [1] WANG Yi-ju. On the block independence in reflexive inner inverse and M-P inverse of block matrix [J], SIAM Journal of Matrix Analysis and its Applications, 1998, 19: 407-415.
- [2] HALL F J. On the independence of blocks of generalized inverses of bordered matrices [J]. Linear Algebra and its Applications, 1976, 14: 53-61.
- [3] HALL F J, HARTWIG R E. Further result on generalized inverses of partitioned matrices [J]. SIAM Journal on Applied Mathematics, 1976, 30: 617-624.
- [4] CHEN Yong-lin. On the block independence in g-inverse of a matrix $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$ [J]. Mathematica Applicata, 1993, 6: 241-248.
- [5] FIEDLER M, MARKHAM T L. Quasidirect addition of matrices and generalized inverses [J]. Linear Algebra and its Applications, 1993, 191: 165-182.
- [6] HE Xu-chu, SUN Wen-yu. Introduction to Generalized Inverse of Matrices [M]. Nanjing: Jiangsu Science Press, 1990. (in Chinese)

块阵广义逆的块独立性的一些等价条件

王宜举1,2

- (1. 南京师范大学数学与计算机科学学院, 江苏 南京 210097;
- 2. 曲阜师范大学运筹学研究所, 山东 曲阜 273165)

摘 要: 基于 [1] 中关于块阵广义逆的块独立性的讨论,给出了两个同阶矩阵关于 {1,2}—逆具有块独立性的一些等价条件.