## Indecomposable Decomposations of R-Quasi-continuous Modules \*

## FAN Yuan

(Dept. of Economics, Northwest Normal University, Lanzhou 730070, China)

Abstract: It is shown that if M is an R-quasi-continuous left R-module and R satisfies ACC on left ideals of the form l(m),  $m \in M$ , then M is a direct sum of uniform submodules.

Key words: R-quasi-continuous module; R-extending module; uniform module.

Classification: AMS(2000) 16E60/CLC O153.3

**Document code:** A **Article ID:** 1000-341X(2002)03-0380-03

It is well-known that any injective left R-module M over a noetherian ring R is a direct sum of injective uniform submodules. Muller and Rizvi in [1] showed that a ring R is left noetherian if and only if every continuous left R-module has an indecomposable decomposition. This result was generalized to extending modules by Okado [2] and to R-continuous modules by Lopez-Permouth, Oshiro and Rizvi [3]. Thus all extending left R-modules and all R-continuous left R-modules over a left noetherian ring R are the direct sum of uniform submodules. On the other hand, a result in [4] states that if M is an extending left R-module and R satisfies ACC on left ideals of the form l(m),  $m \in M$ , then M is a direct sum of uniform submodules. In this paper we will show that if M is an R-quasi-continuous left R-module and R satisfies ACC on left ideals of the form l(m),  $m \in M$ , then M is a direct sum of uniform submodules.

All rings considered here are associative with identity. If K < L is an essential submodule of L we write  $K \triangleleft L$ .

Let M, N be left R-modules. Define the family

$$\mathcal{A}(N,M) = \{ A \subseteq M | \exists X \subseteq N, \exists f \in \text{Hom}(X,M), f(X) \triangleleft A \}.$$

Considering the properties

 $\mathcal{A}(N,M)$ - $(C_1)$ : For all  $A \in \mathcal{A}(N,M)$ ,  $\exists A^* | M$ , such that  $A \triangleleft A^*$ .  $\mathcal{A}(N,M)$ - $(C_2)$ : For all  $A \in \mathcal{A}(N,M)$ , if X | M is such that  $A \cong X$ , then A | M.

Biography: FAN Yuan (1955-), male, born in Lanzhou city, Gansu province, currently an associate professor at Northwest Normal University.

<sup>\*</sup>Received date: 1999-06-07

 $\mathcal{A}(N,M)$ - $(C_3)$ : For all  $A \in \mathcal{A}(N,M)$  and X|M, if A|M and  $A \cap X = 0$  then  $A \oplus X|M$ . According to [3], M is said to be N-extending, N-quasi-continuous or N-continuous, respectively, if M satisfies  $\mathcal{A}(N,M)$ - $(C_1)$ ,  $\mathcal{A}(N,M)$ - $(C_1)$  and  $\mathcal{A}(N,M)$ - $(C_3)$ ,  $\mathcal{A}(N,M)$ - $(C_1)$  and  $\mathcal{A}(N,M)$ - $(C_2)$ .

**Lemma 1** Condition A(N, M)- $(C_i)$  (i = 1, 2, 3) is inherited by direct summands of M. In [4], it was proved that if M is an extending R-module and R satisfies ACC on left ideals of the form l(m),  $m \in M$ , then M is a direct sum of uniform submodules. Here we have

**Theorem 2** Let M be an R-quasi-continuous left R-module and let R satisfies ACC on left ideals of the form l(m),  $m \in M$ . Then M is a direct sum of uniform submodules.

**Proof** Let m be a non-zero element of M such that l(m) is maximal in  $\{l(x)|x \in M, x \neq 0\}$ . Clearly  $Rm \in \mathcal{A}(R,M)$ . Thus there exists a direct summand L such that Rm is essential in L. Suppose that L is not indecomposable. Then there exist non-zero submodules  $L_1$  and  $L_2$  of L such that  $L = L_1 \oplus L_2$ . There exist  $m_i \in L_i$  (i = 1, 2) such that  $m = m_1 + m_2$ . If  $m_1 = 0$ , then  $m = m_2 \in L_2$ , and thus  $Rm \leq L_2$ , which implies that  $Rm \cap L_1 = 0$ . Thus  $L_1 = 0$ , a contradiction. Thus  $m_1 \neq 0$ . Clearly  $l(m) \leq l(m_1)$ . Hence  $l(m) = l(m_1)$ , by the choice of m. Similarly  $m_2 \neq 0$  and  $l(m) = l(m_2)$ . Since  $Rm_1 \neq 0$  it follows that  $Rm_1 \cap Rm \neq 0$ . Thus there exist  $r_1, r_2 \in R$  such that

$$0 \neq r_1 m_1 = r_2 m = r_2 m_1 + r_2 m_2.$$

Hence  $r_2m_2=0$ , and thus  $r_2\in l(m_2)$  but  $r_2\notin l(m_1)$ , a contradiction. Thus L is indecomposable.

By Lemma 1, L is R-extending. For any  $0 \neq a \in L$ , since  $Ra \in \mathcal{A}(R, L)$ , there exists a direct summand K of L such that Ra is essential in K. Now K = L, and thus Ra is essential in L. This means that L is uniform.

Consider a family of cyclic submodules  $\{Rm_i|i\in I\}$  such that  $\bigoplus_{i\in I}Rm_i$  is essential in M. Clearly,  $Rm_i\in \mathcal{A}(R,M)$ , for each  $i\in I$ . The R-quasi-continuity of M yields that there exist direct summands  $L_i$  ( $i\in I$ ) of M such that  $Rm_i$  is essential in  $L_i$  for each  $i\in I$ . Clearly  $\bigoplus_{i\in I}L_i$  is essential in M, while by the R-quasi-continuity of M, it follows that  $\bigoplus_{i\in I}L_i$  is a direct summand of M for every finite subset F of I. We will show that  $M=\bigoplus_{i\in I}L_i$ .

Suppose that  $M \neq \bigoplus_{i \in I} L_i$ . Select  $m \in M - \bigoplus_{i \in I} L_i$ , such that l(m) is maximal in  $\{l(x)|x \in M - \bigoplus_{i \in I} L_i\}$ . Now, there exists  $r \in R$  such that  $0 \neq rm \in \bigoplus_{i \in I} L_i$  since  $M = \bigoplus_{i \in I} L_i$  is essential in M. Then  $0 \neq rm \in \bigoplus_{i \in F} L_i$ , for some finite subset F of I. We know that

$$M = (\bigoplus_{i \in F} L_i) \oplus X$$

for some  $X \leq M$ . Write m = y + x, where  $x \in X$  and  $y \in \bigoplus_{i \in F} L_i$ . It is easy to see that  $l(m) \leq l(x)$ . Since  $m \notin \bigoplus_{i \in I} L_i$ , it follows that  $x \notin \bigoplus_{i \in I} L_i$ . The maximality of l(m) then yields that l(m) = l(x). Now since  $rx = rm - ry \in X \cap \bigoplus_{i \in F} L_i = 0$ , then rm = 0, a contradiction. Hence  $M = \bigoplus_{i \in I} L_i$ .

Now, since every  $L_i$  is uniform, then M is a direct sum of uniform submodules.

A left R-module M is called locally noetherian if every finitely generated submodule is noetherian.

Corollary 3 Any locally noetherian R-quasi-continuous left R-module is a direct sum of uniform submodules.

**Proof** Let M be a locally noetherian R-quasi-continuous left R-module. For any  $m \in M$ ,  $R/l(m) \cong Rm$ . So R/l(m) is a noetherian left R-module. It follows that R satisfies ACC on left ideals of the form l(x),  $x \in M$ . Now the result follows from Theorem 2.

Corollary 4 Let M be a non-singular R-quasi-continuous left R-module. Then M is a direct sum of uniform submodules if and only if R satisfies ACC on left ideals of the form  $l(m), m \in M$ .

**Proof** The sufficiency is clear by Theorem 2.

Conversely, suppose that  $M = \bigoplus_{i \in I} M_i$ , where  $M_i$  is a uniform submodule of M for each  $i \in I$ . By analogy with the proof of [4, Corollary 8.4], we can show that R satisfies ACC on left ideals of the form l(m),  $m \in M$ .

The following example shows that R-extending modules may not be extending.

**Example 5** Let  $R = \mathbb{Z}$  and  $M = \bigoplus_{i \in I} R$  be any free R-module of infinite rank. It follows from [5] that M is R-extending. But M is not extending by [6].

## References:

- [1] MULLER B J, RIZVI S T. On injective and quasi-continuous modules [J]. J. Pure. Appl. Algebra, 1983, 28: 197-210.
- [2] OKADO M. On the decomposition of extending modules [J]. Math. Japonica, 1984, 29: 939-941.
- [3] LOPEZ-PERMOUTH S R, OSHIRO K, RIZVI S T. On the relative (quasi-)continuity of modules [J]. Comm. Algebra, 1998, 26: 3497-3510.
- [4] DUNG N V, HUYNH D V, SMITH P F. et al. Extending Modules [M]. Pitman, London, 1994.
- [5] LIU Zhong-kui. On hereditary R-extending modules [J]. J. of Mathematical Research and Exposition, to appear.
- [6] DOGRUOZ S, SMITH P F. Modules which are extending relative to module classes [J]. Comm. Algebra, 1998, 26: 1699-1721.

## R- 拟连续模的不可分分解

樊 元

(西北师范大学经济系, 甘肃 兰州 730070)

摘 要: 设 R 是环, M 是 R- 拟连续左 R- 模. 如果 R 关于形如  $l(m), m \in M$  的左理想 满足升链条件, 则 M 可写成一致子模的直和.