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On the Panfactorical Property of Cayley Graphs *
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Abstract: A k-regular grapl is called panfactorical, or even panfactorical respectively,
if for every integer s, 1 < s < k,there exists an s-factor, or 2[5}-factor, in this graph.
A criterion for checking an r-regular graph to be panfactorical or even panfactorical is
established. It is proved that every Cayley graph of odd degree is panfactorical and every
Cayley graph of even degree is even panfactorical by using this criterion. For a dihedral
group, we prove that every conuected Cayley graph on this group is panfactorial.

Key words: panfactorial; Cayley graph; finite group; factorization.
Classification: AMS(2000) 05C25/CLC 0157.5
Document code: A Article ID: 1000-341X(2002)03-0383-08

1. Introduction

We only consider simple graphs and finite groups in this paper. For terminology and
notations not defined here, we follow the references (1] (4] and [7].

Let G be a simple graph. Its vertex set is denoted by V(G) and edge set by E(G).
The notation (z,y) € E(G) denotes that (z,y) is an edge of the graph G. A factor of the
graph G is a spanning subgraph of G which has some given properties. If G1,Ga, -+, G,,
8 > 2, are edge-disjoint factors of the graph G such that

then we write G =G, G, 0 --- D G, @ G; and say that G is edge sums of graph G;,

1 < i< s. An r-regular spanning subgra.ph of graph G is called an r-factor of G. By this
definition, each perfect matching is a 1-factor. Call a k-regular graph is panfactorical or
even panfactorical if for every integer s, 1 < s < k, there exists an s-factor or 2[s/2]-factor
in this graph . For example, for any integer n, K2* and C?" are panfactorical, but K?"+!
is only even panfactorical. For a given vertex-transitive graph with degree > r, it is hard
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to say whether G has an r-factoror not. Even if G has an r-factor, generally, we do not
know how to construct it ( see [2] and [6] ).

For a graph G, AutG denotes its automorphism group and =¥ the orbit of the vertex
z under the acting of H, where n € V(G) and H < AutG. Call G to be vertex-transitive
if for Y2,y € V(G), there exists a € AutG such that z* = y. For a finite group I and its
subset 5,51 =S ,1r ¢ S, Cayley graph G = Cay(T : S) is defined as follows

V(Cay(T:S))=T;
E(Cay(I': 5)) = {(9,s9)lg € T,s € S}.

The edges (g, sg) is colored by s, where, g € T',s € 5. It is obvious that G = Cay(T : §)
is regular and vertex-transitive, and is connected iff S is a generating set of I'.

For Cayley graphs, there is a well-known but difficult conjecture not been solved yet
untill today which asserts that every connected Cayley graph with more than 2 vertices is
hamiltonian (see [3] [8] ). Since finding a hamiltonian cycle in Cayley graph is difficult(see
(3] [8] ), we turn our attention to the panfactorical property in Cayley graphs. Notice that
a 2-factor in a graph G is a union of cycles and a hamiltonian cycle is a special 2-factor.
The aim of this paper is to establish a factorization for Cayley graphs in which each factor
is 1-factor or 2-factor and using this factorization to prove that every Cayley graph of odd
degree is panfactorical, every Cayley of even degree is even panfactorical.

2. A condition for a regular graph to be panfactorical

For deciding a k-regular graph is panfactorical or not, it does not need to check whether
there existing all the s-factors, 1 < s < k, since a criterion can be easily established.

Lemma 2.1 ([4],theorem 8.10) A nonempty graph G is 2-factorable iff G is 2n-regular
for some n > 1.

Using Lemma 2.1, a result for even panfactorial property of graphs can be obtained as
follows.

Theorem 2.1 A k-regular graph G is even panfactorical iff k = 0(mod2).

Proof It is obvious that each vertex has even degree in a even panfactorical graph. So
we only need to construct every even factor in the graph with k = 0(mod2). According to
Lemma 2.1, we know that

G=Fl®oF}® - &FZ,
2

where F2,1 <i< %, is a 2-factor in G. Therefore, for any even integer 2s,1 < s < %,
the union of s 2-factors is a 2s-factor in this graph. So G is even panfactorical. Q

Theorem 2.2

i) A (2k + 1)-regular graph is panfactorical iff there is a 1-factor in this graph.

ii) A 2k-regular graph is panfactorical iff there are 1-factor,3-factor, -+, k-factor,in
this graph if k = 1(mod2) or there are 1-factor,3-factor,: - -, (k — 1)-factor,in this graph if
k = 0(mod2).

Proof The necessarity of i) and ii) is obvious. it only need to prove its sufficiency.
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i) Let G be a (2k + 1)-regular graph. If there is a 1-factor F! in G, then G\F! is a
2k-regular graph. According to Lemma 2.1, we get

G\F'=F!¢Fl®- ---o FZ,

where, F?,1 < i < k, is 2-factors in G\ F!.Therefore,

G=F'9F!9oFl® - -0F,.
Now we construct every s-factor in G, where 1 < s <2k + 1.

Case 1 s = 0(mod?2)
Let s = 2m,1 < m < k, then the union of m 2-factors is an s-factor in the graph G.

Case 2 s = 1(mod2)

Let s =2m + 1,1 < m < k, then the union of m 2-factoes and Fj is an s-factor in the
graph G.

Combining Case 1 with Case 2, we know i) is true.

ii) Let G be a 2k-regular graph. Notice that if F" is an r-factor in G, then G\F" is a
(2k — r)-regular subgraph of G. If there are 1-factor, 3-factor, - - - k-factor(if k¥ = 1(mod2))
or 1-factor, 3-factor, .-, (k — 1)-factor(if k = 0(mod2)) in the graph G, then there is
(21 — 1)-factor in G, where 1 <1< k.

By Theorem 2.1, G is even panfactorical. Whence, G is panfactorical. O

3. A factorization of Cayley graph

Lemma 3.1 A vertex-transitive graph G is a Cayley graph iff there is a regular subgroup
in AutG.

For a permutation group H acting on a set S, there is a naturally induced acting of
H on every 2-elements subset of S such that {u,v}* = {uh,vh} for u,v € S and h € H.
Especially, for a graph G and H < AutG,there is an induced acting of H on E(G). Now
choose a graph G and assume that H < AutG and H is a regular group in the following
discussion.

Lemma 3.2 vz € V(G),2" = V(G) and H, = 1y.
Lemma 3.3!"1 For Y(z,v), (v, w) € E(G), (z,y)" N(u, w)* =0 or (z,y)7 = (v, w)".
Lemma 3.4 For ¥(z,y) € E(G),|H )| =1 or 2.

Proof Assume that [H(;,)| # 1. Since any element h € H(,,), we have (z,9)* =
(z,y).That is (z",y") = (z,y). So we have 2" = z and y* = y or 2" = y and y* = =.
For the first case we get h = 1y by Lemma 3.2. For the second case, we get = 2.
Therefore, we know h% = 1p . 7

Now if there exists an element g € H(,,)\{1x,h}, then we get 2¢ = y = zh and

v? = ¢ = y". whence we have ¢ = h by Lemma 3.2, a contradiction. So we must have
lH(m,y)l = 2. a

Lemmma 3.5 For any (z,y) € E(G), if |[H (5| = 1, then (z,y)¥ is a 2-factor.
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Proof Since
27 = V(G) c V(G[(=,v)7)) c V(G),

V(Gl(z,9)"]) = V(G).

Therefore, (z,y)" is a spanning subgraph of G.
Since H acting on V(G) is transitive, there exists h € H such that " = y. It is
obvious that o(h) is finite and o(h) # 2. Otherwise, we have |H(, )| > 2, a contradiction.

Now (z,y)" = zz"2"* ... 2"""™'2 is a cycle in the graph G. Consider the right coset
decomposition of H on < h >. Suppose H = O <h>a;and < h>a;<h>a; =0,
i=1
if # j, a = ].H.
Let X = {a,a,,...,a,}. We know that for any a,b € X,
(<h>a))(<h>b)=0,
if @ # b. Since (z,y)<"% = ((z,4)"") and (z,y)<""® = ((z,y)*"")" are also cycles, if
V(Gl(=, )" NN V(Gl(z,9)*""")) # 0

for some a,b € X,a # b, then there must be two elements f,g €< h > such that /¢ = z9°,
According to Lemma 3.2, we get fa = gb, thatis ab™? €< h >. So<h >a=<h > b
and a = b, contracdits to the assumption that a # &.
Therefore, we know that (z,y)¥ = Ux(z,y)<">“ is a disjoint union of cycles. So
ae

(z,y)¥ is a 2-factor of the graph G. o
Lemma 3.6 For any (z,y) € E(G), (z,y)¥ is a 1-factor if |Hig ) = 2.

Proof Simlar to the proof of Lemma 3.5, we know that V(G[(z,v)7]) = V(G) and (=, y)?
is a spanning subgraph of the graph G.

Let H,,) = {1g,h}, where 2" = y and y* = z. Notice that (z,y)* = (=,y) for
a € Hg . Consider the coset decomposition of H on H (z,y)» We know that

t
H=JHgyh,
i=1
where H; )bV H(zy)b; = 0if i # j,1 < 4,5 <t. Nowlet L = {H(,,)b;,1 <i <t} We
get the decomposition of (z,y)":

(z’ y)H = U (zay)b‘

bel

Notice that if b = H, ,)b; € L, (z,y)" is an edge of G. Now if there exists two elements
c,d€ Lye=H,, fand d = H(; )9, f # g such that

V(Gl(z,9) N V(Gl(=,9)]) # 0,
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there must be zf = 29 or 2/ = y9. If 2f = 29, we get f = g by Lemma 3.2, contracdits
to the assumption that f # g. If 2/ = y9 = 2", where h € H;,), we get f = hg and
fogte Hiz), 50 Hp o) f = Hzyy)g. According to the definition of L, we get f = g, also
contradicts to the assumption that f # g. Therefore, (z,y)? is a 1-factor of the graph G.
a

Now we can obtain a factorization for Cayley graph, which is useful in determining
factors of Cayley graph.

Theorem 3.1 Let G be a vertex-transitive graph and H be a regular subgroup of AutG.
Then for any chosen vertex z,z € V(G), there is a factorization for G such that

G=( @ (z,v)") @( @ (z,9)7), (3.1)

yeNG(z)’lH(:,y)l'—'l yENG(“’)VlH(:,y)I:z

where (z,y)" is a 2-factor if |H, )| = 1 and is a 1-factor if |H, | = 2.

Proof For any chosen vertex z,z € V(G), according to Lemma 3.2-Lemma 3.4, we know

that
G=( D (P D (=)

yENG(:n),|H(z,y)|=l yGNC,-(z),lH(,,’)|=2

By Lemma 3.5 and Lemma 3.6, we know that (z,y)¥ is a 2-factor if |H(,,)| = 1 and
is an 1-factor if |H(,,)| = 2. Whence, we get the factorization (3.1) and the proof is
complete. O

Now for a Cayley graph Cay(I' : §), we can always choose the vertex z = 1r and H is
the right regular transformation group on I'. We restate Theorem 3.1 as follows.

Theorem 3.2 Let I' be a finite group with its a subset S,5™) = S, 1r ¢ § and H is
the right transformation group on I'. Then there is a factorization for the Cayley graph
Cay(T' : S) such that

G =( @ (1F13)H) @( @ (ll‘vs)H)7 (3.2)

s€S,87#1r s€S5,82=1p

where (lp,s)H is a 2-factor if s> # 1p and is a 1-factor if s* = 1.

Proof For any h € H(y ,), if h # Ir, then we have 1ph = s and sh = 1p,that is s? = 1.
According to Theorem 3.1, we get the factorization (3.2) for the Cayley graph Cay(T : §).
a

We give some examples to show the extremal cases in (3.2).
Example 3.1 Let T =< aj,a3,'++,a,]a? = ad = --- = a2 = 1p > be an Abelian group.
Choose S = {aj,as, --,a,}. Then every element in § is a convolution. According to
Theorem 3.2, we get the 1-factorization for Cay(T : )

Cay(I': §) = @(h,s)H.
1)
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Example 3.2 For any integer m,n,m > 1,n > 1, let T =< a,bla?™*! = 1,p2"+1 =1 >
be an Abelian group. Choose § = {a,b,a®™,b>"}. Then the Cayley graph Cay(T : §) is
a 4-regular graph. Now since |I'| = (2m + 1)(2n + 1) = 1(mod2), there does not exists
1-factor in the Cayley graph Cay(T : S), so we have a 2-factorization for Cay(I : S)

Cay(I': §) = @(h,s)H.
€S

4. The factorial and panfactorial property of Cayley graphs

According to Theorem 3.2, we can immediately get the factorical property of Cayley
graphs.

Theorem 4.1 Let G = Cay(I' : §) be a Cayley graph. Then

i) Every G with |S| > 2 has a 2-factor.

ii) Every G has a 1-factor if | S| = 1(mod2),and especially,every Cayley graph of degree
3 is a union of a 1-factor and a 2-factor.

iii) Every G with |S| = 0(mod2) has a 2-factorization.

iv) Every G with |T'| = 1(mod2) has a 2-factorization;

v) G has every k-factor, where 1 < k < 3,if | S| > 4,|T'| = 0(mod2) and has a 1-factor
if |S]| # 2,|T| = 0(mod2). '

Proof Assume that H is the right regular transformation group on T'.

i) According to Theorem 3.2, if every (1r,s)?,s € S, is not a 2-factor, then there are
two 1-factors (lp,sl)H,(lr,82)H at least,where s;,s; € S and s? = sZ = 1p.The union
(1r,s1)¥ U(1r, s2)¥ forms a 2-factor of the graph G.

ii) If s € S and s? # 1r, then since S = $7!, we know that s7! # s and s € S, so0
{s,s7'} C S, that is, the non-convolution elements appear in pairs in §. Whence we get
that there is a convolution 7 in §. Therefore, (1r,r)H is an 1-factor and this result can
be obtained from Theorem 3.2.

ili) According to Theorem 3.2, if there does not exist s,s € S such that s? = 1, then
(3.2) is a 2-factorization for Cay(T' : §). Otherwise, there is a convolution in S. We prove
that there are even convolutions in S. In fact, if s? # 1r, then {5,571} C §,s # s~ 1.Since
|S| = 0(mod2), so we get that there are even convolutions in S. Since the union of two
1-factors is a 2-factor, the conclusion is obtained.

iv) Since every graph with odd order has not 1-factor, so for any s,s € §,s% # 1.
We get the factorization

G= @(h" 3)Ha

3€S

where (1r, )" is a 2-factor in G for each s,s € S.

v) If there exists a convolution in S, the conclusion is obvious. So we assume that
there is not a convolution .If there exists s,s € S such that o(s) = 0(mod2),then (1r, s)¥
be a union of cycles with even order. We can choose an 1-factor from the subgraph (1r, s)H
for G and get k-factors, 1 < k < 3. Now if Vs € S, 0(s) = 1(mod2),since (1r,s)" is a
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2-factor in G and |G| = |T'| = 0(mod2), simlar to the proof of Lemma 3.5 we get that

(Ir, )" = J (r,s)%> = {(1r,s)%""%,1 < i < 2k,a; = 1Ip}.
acX

Since |S| > 4,there exists s’ € § such that s’ €< s . Not loss of generality, assume
that s’ €< s > aj, then

F = {(1r,s')**"%,i = 1(mod2),1 < i < 2k}.

Forms a 1-factor and F{J(1r, s)? is a 3-factor in G. So the conclusion is true. O
Joseph Zaks conjectured that for all d > 4 or d = 2 and ¢ > 3, the Parsons graph
Ty(d,q) has a 1-factor. This conjecture is proved in [5].But since every Parsons graph
Ty(d,gq) is a Cayley graph Cay(T' : S), where I' = SL(d,q) and S = Sy(d,q) = {4 €
SL(d,q)|det(A—1T) = b}, and |I'| = 0(mod2), so from Theorem 4.1.v), we can also get this
conjecture is true.
Now we turn our attention to the panfactorical property of Cayley graphs.

Theorem 4.2
i) Every Cayley graph G of odd degree is panfactorical.
ii) Every Cayley graph G of even degree is even panfactorical.

Proof i) Since the union of 2-factors is a even regular graph, now if G is a (2k +1)-regular
graph,k > 1, there must be a 1-factor in G according to Theorem3.2. Therefore, we get
that G is panfactorical by Theorem 2.2.

ii) This result is a corollary of Theorem 2.1. O

For Cayley graphs on dihedral group, we have the following more strong result for their
panfactorial property.

Theorem 4.3 Every connected Cayley graph on a dihedral group is panfactorial.

Proof Let D, =< a,b|a® = b2 = 1,aba = b »= {1,q,a?,...a" %, b,ba,..,ba" "'} be a
dihedral group. Similar to the proofs of Theorem 4.1 ii) and Theorem 3.2, we only need to
prove that every generating set for D, contains a convolution. Notice that for any integer
i,0 < i< n—1,ba*is a convolution since

(ba*™1)? = ba' " (aba)a* ! = ba"lba' ! = ba'"2ba' 2

e =2 =1.

Because any generating set must has a ba*,0 < i < n—1, type element, whence S contains
a convolution. O

References:

[1) BIGGS N L, WHITE A T. Permutation Groups and Combinatorial Structures [M]. Cam-
bridges University Press, 1979.

[2] CAMERON P J. Automorphism Groups of Grapls, in Sclected Topics in Graph Theory (II)
[M]. Academic Press, 1983, 88-127.

— 389 —



[3] CURRAN S J, GALLIAN J A. Hamiltonian cycles and path in Cayley graphs and digraphs-
A survey [J]. Discrete Math., 1996, 156: 1-18.

[4] CHARTRAND G, LESNIAK L. Graphs and Digraphs [M]. Wadsworth & Brook/Cole, Bel-
mont CA, 1986.

[5) WANG Jun, XU Ming-yao. Quasi-abelian Cayley graphs and Parsons graphs [J]. Europ. J.
Combinatorics, 1997, 18: 597-600.

[8] WANG lJian-fang, CHEN Cluan-ping. On Isomorphic Factorization of Vertex-Transtive
Graphs-A Survey, Procceding of Discrete Mathematics and its Applications [M]. Peking
university press, 1994, 23-26.

[7) WIELANDT H. Fiuite Permutation Groups [M]. Academic press, 1964.

[8] WITTE D, GALLIAN J A. A survey: Hamiltonian cycles in Cayley graphs [J]. Discrete Math.,
1984, 51: 293-304.

Cayley BEIfY;ZHF MR

E HK K
(ForZe MR B A2 A, B3 100044)

W R — k- ENEEEEXMEEEEL 5,1 < s <k, HFEE- s BFH—2(4]
BF, MHHAZEFREZEFER. 23CGEWT MK Cayley BIRERFH, &1
REE Cayley KIEMBEEFH. FIHEWT —EA# EAHEA Cayley RHRZEFH.

— 390 —

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



