Completely Positive Realizations of a Cycle *

XU Chang-qing (Dept. of Math., Anhui University, Hefei 230039, China)

Abstract: An $n \times n$ real matrix A is called doubly nonnegative, if A is entrywise nonnegative and semidefinite positive as well. A is called completely positive if A can be factored as $A = BB^t$, where B is some nonnegative $n \times m$ matrix. The smallest such number m is called the factorization index (or CP-rank) of A. This paper presents a criteria for a doubly nonnegative matrix realization of a cycle to be completely positive, which is strightforward and effective.

Key words: doubly nonnegative matrix; completely positive graph; cycle; factorization index.

Classification: AMS(2000) 05C50,15A48/CLC O151.21

Document code: A Article ID: 1000-341X(2002)03-0391-05

1. Introduction

Completely positive matrices are important in the study of block designs in combinatorial analysis, and have applications in establishing economic model [8].

Recall that an $n \times n$ matrix A is said to be completely positive, denoted by $A \in CP_n$, if there exist m nonnegative column vectors b_1, \dots, b_m such that

$$A = b_1 b_1^t + \cdots + b_m b_m^t,$$

where t denotes transpose. The smallest such number m is called the factorization index of A and denoted by $\phi(A)$. An $n \times n$ nonnegative matrix A is called doubly nonnegative, denoted by $A \in DP_n$, if it is semidefinite positive. It is known that

Lemma $\mathbf{1}^{[1,3]}$ $DP_n = CP_n$ for $n \leq 4$.

But for n > 4, CP_n is a proper subset of DP_n (see [1,3]).

we denote A(l) the submatrix of A obtained by deleted the lth row and column of A. Let $E_{rs} = (e_{ij})$ denotes an $n \times n$ matrix, where $e_{rs} = 1$, otherwise, $e_{ij} = 0$. For a real symmetric matrix A, the graph G(A) = (V, E) of A is defined as: $V = \{1, \dots, n\}$ and

$$E = \{\{i, j\}: i \neq j, a_{ij} \neq 0, i, j = 1, \dots, n\}.$$

Foundation item: Supported by Anhui Education Committee (LJ990007) Biography: XU Chang-qing (1966-), male, Ph.D., Associate Professor.

^{*}Received date: 1999-05-11

For any vertex $l \in V$, let N(l) denote the set of all neighbors of l in G, i.e.,

$$N(l) = \{i : (i,l) \in E, i \neq l\}.$$

By a doubly nonnegative realization of a graph G, we mean a matrix $A \in DP_n$ for which G(A) = G. The set of all such matrices is denoted by $\Lambda_G(\text{see }[11])$. G is called completely positive (abbrev. cp) if $A \in CP_n$ for any $A \in \Lambda_G$. It is shown in [3,4,5] that

Lemma 2 A graph G is cp if and only if G does not contain an odd cycle of length greater than 4.

From lemma 2, we know that if G is acyclic(i.e., without any cycle) or G is an even cycle, then G is cp.

2. A necessary and sufficient condition

Let $G_1 \cong C_{2k+1}$ (see [11]), i.e., G_1 is a cycle with length 2k+1 where $k \geq 2$. By [3], we know that there are some(in fact, many)matrices in Λ_{G_1} which are non-cp and we would like to determine which matrices are cp.

It is easy to find that for any $A \in \Lambda_{G_1}$, A is permutation similar to a matrix of the form

$$\begin{bmatrix} a_{11} & a_{12} & 0 & \cdots & 0 & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a_{n-1,n-1} & a_{n-1,n} \\ a_{n1} & 0 & 0 & \cdots & a_{n,n-1} & a_{nn} \end{bmatrix},$$

$$(1)$$

where $a_{ij} = a_{ji}$ for $1 \le i, j \le n$. Hence, we assume that A is of form (1) from now on. We have shown the following interesting result in [11]:

Theorem 1 Let $A \in DP_n$ be of the form (1) where $a_{ij} \neq 0$ if and only if $j = i - 1, i, i + 1 \pmod{n}$. Then A is in CP_n if and only if there exist two positive numbers a, b such that

- (i) $ab = a_{1n}$.
- (ii) $H = A (a^2 E_{11} + b^2 E_{nn} + a_{1n} E_{1n} + a_{n1} E_{n1}) \in DP_n$.

But it is not practical to use Theorem 1 to determine which matrices in Λ_{G_1} are cp.

The following interesting result gives a necessary and sufficient condition for any matrix $A \in \Lambda_{G_1}$ to be cp, which is proved to be more effective and convenient for us to use than any other one.

Theorem 2 Let $A \in DP_n$ and that $G(A) \cong C_n$ with n an odd number large than 4. Then $A \in CP_n$ if and only if det $A \geq 4A_{C_{|n|}}$ ($A_{C_{|n|}}$ denotes the weight of the cycle G(A)).

Proof Suppose $A \in CP_n$ be in the form (1). We may assume that A is irreducible and $a_{11} = a_{22} = \cdots = a_{nn} = 1$; Otherwise, we substitute the matrix A with $D^{-1/2}AD^{-1/2}$, where $D = diag(a_{11}, \dots, a_{nn})$ (note that $a_{ii} > 0$ for all i by the irreducibility of A). Then A can

be factored as $A = BB^t$ where

$$B = \begin{bmatrix} b_{11} & b_{12} & & & & \\ & b_{22} & b_{23} & & & \\ & & \ddots & \ddots & & \\ & & & b_{n-1,n} & \\ b_{n1} & & & b_{n,n} \end{bmatrix}, \tag{2}$$

where B is a nonnegative matrix of order n, with $b_{ij} > 0$ for $j = i, i+1, i = 1, 2, \dots, n(n+1)$ $1 \equiv 1$). Hence det $A = (\det B)^2$. While

$$(\det B)^2 = (b_{11}b_{22}\cdots b_{nn} + b_{12}b_{23}\cdots b_{n-1,n}b_{n1})^2$$

$$\geq 4b_{11}b_{22}\cdots b_{nn}b_{12}b_{23}\cdots b_{n-1,n}b_{n1}$$

$$= 4a_{12}a_{23}\cdots a_{n-1,n}a_{n1},$$

that is, det $A \geq 4A_{|C_n|}$.

Conversely, suppose det $A \geq 4A_{|C_n|}$. Partition A as the form

$$\begin{bmatrix} A_{11} & \alpha \\ \alpha^t & 1 \end{bmatrix}, \tag{3}$$

where $\alpha = (a_{1n}, 0, \dots, 0, \dots, a_{n-1,n})^t \in \mathbb{R}^{n-1}$. It is easy to see that

$$\det A = \det(A_{11} - \alpha \alpha^{t}) = \det H + 4a_{12}a_{23} \cdots a_{n-1,n}a_{n1}. \tag{4}$$

Here H is the following symmetric nonnegative matrix of order n-1,

$$\begin{bmatrix} 1 - a_{1n}^2 & a_{12} & & & a_{1n}a_{n-1,n} \\ a_{21} & 1 & a_{23} & & & & \\ & & a_{32} & a_{33} & \ddots & & \\ & & & \ddots & \ddots & & \\ a_{1n}a_{n-1,n} & & & a_{n-1,n-2} & 1 - a_{n-1,n}^2 \end{bmatrix},$$

$$(5)$$

from the inequality $\det A \geq 4A_{|C_n|}$ and (4), $\det H \geq 0$. Meanwhile, $A_{11} - \alpha \alpha^t$ is semidefinite positive by the double nonnegativity of A. Therefore $H \in DP_{n-1}$. But $G(H) \equiv C_{n-1}(n-1)$ 1=2k) is an even cycle - a completely positive graph. So $H \in CP_{n-1}$. Moreover, H has a factorization $H = B_1 B_1^t$ with

$$B_1 = \begin{bmatrix} b_{11} & b_{12} & & & & \\ & b_{22} & b_{23} & & & \\ & & \ddots & \ddots & & \\ & & & b_{n-2,n-1} \\ b_{n-1,1} & & & b_{n-1,n-1} \end{bmatrix}.$$

Here B_1 is a nonnegative matrix of order n-1. Put

gative matrix of order
$$n-1$$
. Put
$$b'_{11} = \sqrt{b^2_{11} + a^2_{1n}}, \qquad b_{n-1,n} = \sqrt{b^2_{n-1,1} + a^2_{n-1,n}},$$

$$b_{n1} = \frac{a_{1n}}{b'_{11}}, \qquad b_{nn} = \frac{a_{n-1,n}}{b_{n-1,n}},$$

- 393 -

and

$$B = \begin{bmatrix} b'_{11} & b_{12} \\ & b_{22} & b_{23} \\ & & \ddots & \ddots \\ & & & b_{n-1,n} \\ b_{n1} & & & b_{nn} \end{bmatrix}$$

(B is of order n) and denote $P = BB^t = (p_{ij})$. Comparing A with P, we have $p_{ij} = a_{ij}$ for all $(i,j) \neq (n,n)$. Next we want to prove $p_{nn} = a_{nn} = 1$. Since $b_{11}b_{n-1,1} = a_{1n}a_{n-1,n}$,

$$p_{nn} = b_{n1}^2 = b_{nn}^2 = \frac{a_{1n}^2}{b_{11}'^2} + \frac{a_{n-1,n}^2}{b_{n-1,n}^2}$$

$$= \frac{a_{1n}^2}{b_{11}^2 + a_{1n}^2} + \frac{a_{n-1,n}^2}{b_{n-1,1}^2 + a_{n-1,n}^2}$$

$$= \frac{a_{1n}^2 a_{n-1,n}^2}{b_{11}^2 a_{n-1,n}^2 + b_{11}^2 b_{n-1,1}^2} + \frac{b_{11}^2 a_{n-1,n}^2}{b_{11}^2 (b_{n-1,1}^2 + a_{n-1,n}^2)}$$

$$= 1.$$

Hence $A = BB^{t}$.

Generally, if we denote $\tilde{A} = D^{-1/2}AD^{-1/2} = (\tilde{a}_{ij})$, then $\tilde{A} \in CP_n$ if and only if $A \in CP_n$, and $\tilde{a}_{ij} = (a_{ii}a_{jj})^{-1/2}a_{ij}$. By using the above result to \tilde{A} and noticing that $\det \tilde{A} = (a_{11} \cdots a_{nn})^{-1} \det A$, and $\tilde{A}_{|C_n|} = (a_{11} \cdots a_{nn})^{-1} A_{|C_n|}$, we obtain $A \in CP_n \rightleftharpoons \det A \ge 4A_{|C_n|}$.

Corollary 2 Let $A \in CP_n$ and suppose that G(A) is an odd cycle of length greater than 4. Then $\varphi(A) = n$.

This result is immediate from the proof of Theorem 2.

Corollary 3 Let $A \in DP_n$ be in form (1) with n an even number. Then $\det A \geq 4A_{|C_n|}$.

Proof Since n is an even number, $G(A) \cong C_n$ is cp. Hence $A \in DP_n$ implies $A \in CP_n$. By Theorem 2, we get det $A \geq 4A_{|C_n|}$.

We conclude the discussion by the following example which illustrate that the condition det $A \ge 4A_{|C_n|}$ generally does not imply that $A \in DP_n$ even if A is in form (1).

Example Let A be the matrix

1	0.0616715	0	0	0	0.762924	1
0.0616715	1	0.810464	0	0	0	ĺ
0	0.810464	1	0.868167	0	0	
0	0	0.868167	1	0.546131	0	١.
0	0	0	0.546131	1	0.929494	ļ
0.762924	0	0	0	0.929494	1	

Then simple calculations yield

$$\det A = 0.107739$$
, $\det A - 4A_{|G|} = 0.0405173$.

But A is not semidefinite positive, since det A(6) < 0.

References:

- [1] HAll Jr M. Combinatorial Theory (2nd ed.) [M]. Wiley, New York, 1986.
- [2] JACOBSON D H. Extensions of Linear-Quadratic Control Optimizations and Matrix Theory [M]. Academic Press, New York, 1977.
- [3] HALL Jr M. A survey of combinatorial analysis surveys in applied mathematics [J]. Wiley, New York, 1958, 4: 35-104.
- [4] BERMAN A, HERSHKOWITZ D. Combinatorial results on completely positive matrices [J]. Linear, Algebra, Appl., 1987, 95: 111-125.
- [5] BERMAN A, GRONE R. Bipartite completely positive graphs [J]. Proc. Cambridge Philos. Soc., 1988, 103: 269-276
- [6] BERMAN A, KOGAN N. Characterization of completely positive graphs [J]. Discrete Math., 1993, 114: 297-304.
- [7] BERMAN A, PLEMMONS R. Nonnegative Matrices in the Mathematical Sciences [M]. Academic Press, New York, 1979.
- [8] DREW J H, JOHNSON C R, LOEWY R. Completely positive matrices associated with M-matrices [J]. Linear and Multilinear Algebra, 1994, 37: 303-310.
- [9] MARKHAM T L. Factorizations of completely positive matrices [J]. Proc. Cambridge Philos. Soc., 1971, 69: 53-58.
- [10] GRAY L J, WILSON D G. Nonnegative factorization of positive semidefinite nonnegative matrices [J]. Linear Algebra Appl., 1980, 31: 119-127.
- [11] XU Chang-qing, LI Jiong-sheng. A note on completely positive graphs [J]. Sys. Sci. Math., 2000, 13: 121-125.

关于圈的完全正矩阵实现

徐常青

(安徽大学数学系,安徽 合肥 230039)

摘 要: 本文给出了一个关联图为圈的非负、半正定矩阵 A 为完全正的一个充要条件. 我们还证明了这样的矩阵 A(当 A 为完全正时)的分解指数即为 A 的阶数.