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Abstract: The behavior of the perturbation map is analyzed quantitatively by using
the concept of contingent derivatives for set-valued maps under Benson proper efficiency.
Let W(u) = Pmin[G(u),S],y* € W(u"). It is shown that, under some conditions,
DW(u*,y") C Pmin[DG(u",y"), 5], and under some other conditions, DW (u",y") D
P min[DG(u",y"), S}.
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1. Introduction

It is well known that stability and sensitivity analysis is not only theoretically inter-
esting but also practically important in optimization theory. A number of useful results
have been obtained in usual scalar optimization. See, for example, B.Bank, J.Guddat,
D.Klatte, B.Kumer and K.Tammer!!, and R.T.Rockafellar?l. Here, stability means the
qualitative analysis of the perturbation (or marginal) function (or map ) of a family of
parametrized optimization problems, and sensitivity means the quantative analysis, that
is, the study of derivatives of the perturbation function.

For vector optimization ,the optimal values are not unique, and hence we should con-
sider a set-valued perturbation map. Though several concepts of derivative of set-valued
map were proposed(?5], the concept of contingent derivative is the most adequate for our
purposes!®. Along with this thought, many developments(®=9] are obtained. On the other
hand, we note that though the discussions are delt with the sensitivity of a given efficient
element, the given element is required to be a properly efficient element of the perturba-
tion map ( or function),which implies that the proper efficiency is an essential property
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and we should discuss the stability and sensitivity for a given proper efficient element, for
example, Benson proper efficient element. The stability problems about Benson proper
efficiency have been investigated by Wei L.Y.,Huang Z.J. and Mei J.L. in {10]. The pur-
pose of this paper is to discuss the sensitivity for the Benson proper efficient element of a
perturbation map.

2. Contingent derivative and the Benson proper efficient elements of
set-valued map

Throughout this section, U and Y are two Banach spaces, F' is a set-valued map from
UtoY,S CY is a closed, convex and pointed cone with interior intS # 0.

By 6y we denote the zero element of linear vector spaces Y and by clA we denote the
closure of A.

Let A CY be a nonempty subset. The generated cone of A is defined as

cone(A) = {aa:a > 0,a € A}.

It is well known that cone(A) is a nonempty cone. It is also a convex cone if A is a
convex set.

A set-valued map F : U — 2Y is called S-convex on U, if, for any z;,z, € U, and for
any X € [0,1], we have AF(z1) + (1 — A)F(z2) C F(Az1+ (1 — A)=z2) + S.

For a set-valued map F : U — 2¥, we define the epigraph of F by

epiF = {(u,y) :u € U,y € F(u)+ S}.
A well known result is that F' is S-convex if and only if epiF is a convex set.

Definition 1) Let A be a nonempty subset of Banach space U,u" € clA. The set

Ta(u") C U defined by Ta(u")= N N U (3(A - u")+¢€B) is called the contingent
£>0 a>00<h<a
cone of A at u" . Where B is the unit ball in U. In other words, u € T4(u") if and

only if there exist hn > 0,h, — +o0o(n — +00),u, € A,un — u"(n — +00) ,such that

u= lim h,(u, - u").
n—+oo
It is well known that T4(u") is a closed convex cone when A is a convex set.

Definition 2 Let yo € F(uy). We call a set-valued map DF(ug,y0) : U — 2Y the
contingent derivative of F at (ug,yo) if epiD F(ug, yo) = Tepir(uo, ¥o) .

Definition 3 Let A CY be a nonempty set, we define
Pmin[A,S] ={y € A:(—S5)Nclcone(A + S — y) = {6y }},
Pmax[A,S]={y € A:SNclcone(A - S —y) = {6y }},

and
min[4,5]={y€ A: An(y-5) = {y}},
where clA is the closure of A. It is not difficult to show that

Pmin[4, §] C min[4, §]
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is always true.
We call Pmin[A, S] the Benson proper efficient set of A about pointed cone S. When
y" € Pmin[A, S], we call y" a Benson proper effieient point of set A.

Definition 4121 A basefor AC Y is a nonempty convex subset @ of A with 8y ¢ @
such that every a € A,a # Oy, has a unique representation of the form ab,where b € Q
and a > 0.

A set-valued map F : U — 2Y is said to be lower semicontinuous at u* € U if uj, — u®
and y" € F(u") imply the existence of a integer K and a sequence {y*} C Y such that
y* € F(u*) for k > K and y* — y"(k - +0).

Definition 5!° Let A be a nonempty set in U, U™ denote the dual of U. The normal cone
Na(u) to A at u” is the negative polar cone of the tangent cone Ty(u"),i.e.,

Na(w) = [Ta()° = {p € U" : () < 0,u € Ta(u)}.
When A is a convex set and u” € A we have N4(u) = {p € U™ : p(u") > p(u),u € A}.

Definition 6 Let A + S be a nonempty subset in Y. If y* € Pmin[A, S] satisfies

Nats(y®) € intS° J{6v},

then y” is called the normally Benson proper efficient point of A.
3. Contingent derivative of the perturbation map

Let G(u) be a set-valued map from U to Y with U the perturbation parameter vector
space and Y the objective space. We define another set-valued map W from U to Y by

W(u) = Pmin[G(u), §] (1)

for every u € U, and call it the perturbation map, since it is a generalization of the
perturbation map in scalar optimization, vector optimization, and set-valued optimization.
We call (u",y") a Benson proper efficient element of (1) if y* € P min[G(u"), S].
The purpose of this section is to investigate the relations between the contingent deriva-
tives of W and that of G.

Lemma 10 If F(u): U — 2Y is an S-convex set-valued map and u” € intU, then F + §
is lower semicontinuous at u”.

Lemma 20131 For a cone Q C Y and its dual cone Q* = {p € Y*|p(q) > 0,9 € Q}, we
have ‘P(q) > 0 for pE Q*\{GY‘}'»Q € int@, and Y e intQ*)q € Q\{OY}’

Lemma 3 G(u) C W(u) + S.

Proof Suppose to the contrary, there exists y € G(u) such that y ¢ W(u) + S, then for
any s € S we have y — s ¢ W(u) + 5, which implies y — s ¢ Pmin(G(u),S) and

cleone(G(u) + § — y + s)[ J(=S\{6r}) # 0.
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Let a € clcone(G(u)+ S —y+3)N(—=S\{fy}). Then there exist t, > 0,y € G(u),s, €
S, such that for any s € 5, a = lirixoo ta(yn + sn —y+3) € =S\{bv}.

Let ¢ € intS*. Then by Lemma 2 we know

0> p(a) = Lm tu(p(yn)+ ¢(ss) = () + ¢(s))
holds for any s € S. Hence there exists N. > 0 such that when n > N,

ta(p(yn) + ©(sn) — ¢(y) + ¢(s)) < 0

holds for any s € S. In particular, we have for any s € §,

e(yn) + e(sn) — e(y) + #(s)) <0,
which is not correct since S is a cone. Hence Lemma 3 holds.

Theorem 1 Let G(u) be an S-convex set-valued map, (u”,y") be a Benson proper
element of (1). Then
DG(u",y")(w) € DW(u™, 5")(w) (2)

holds for any u € U. Hence P min[DG(u",y")(u), S] C DW(u",y")(u).

Proof Let y € DG(u",y")(u). Then by Definition 2 ,there exist sequence {u,} C U, u, —
u  {yn} CY,yn € G(u,) + S,yn — ¥, tn > 0,t, = +o00o(n — +0) ,such that

(u,9) = lm &,((un,vn) — (v",97)).

n—+oo

By Lemma 3 we know that G(u) C W(u) + S. Hence G(u,)+ S C W(u,) + S, and
Yn € W(u,) + S. Therefore y € DW(u",y")(u), and (2) holds.

Theorem 2 Letu” € intU,y” be a normally Benson proper efficient point of DG(u”, y")(u),
S have a compact base, U* and Y* are * weak compact. Then

DW (v, y™)(u) C Pmin[DG(u",y")(u), S],u € U.

Proof Lety € DW(u",y")(u). Then y € DG(u”,y")(u).
If y ¢ Pmin[DG(u",y")(u), 5], then clcone(DG(u", y" W u)+ S —y) (-S\{0y}) # 0.
Let a € clcone(DG(u”,y™)(u)+S—-y)N(=S\{0y }). Then there exist y,, € DG(u",y")(u),
38p € S,t, > 0, such that a = nLiI-Poo to(yn + sn — y) € =S\ {0y }.

By Lemma 2 we know for any v € Npg(un yr)+s(y")

Y(a) = L (¥(yn) + ¥(sn) — ¥(y)) > 0.

tn
1— 400

Hence, there exists ¥ € DG(u”,y")(u) such that

V(¥ —y) > 0. (3)

Since § € DG(u”,y")(u), there exist {A;} € intR;, 7, € Y, @ € U(k = 1,2,--+), such
that @z — u,5, — 7, and for each k, y* + R.F;, € G(v” + hpwg,) + S.
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On the other hand, by y € DW(u",y")(u) there exist hy > 0k = 1,2,---),u; €
Uy € Y(k=1,2,---), such that hy — 0,ux — u,ypr -y (k — 00), and for any k

y,\ + hiyr € W(UA + hkuk) + S.

Since hy — 0, we may assume h; < h; by taking a subsequence if necessary. Since
v + heyr € W(u" + hruy) + S, there exist s, € S(k =1,2,--) such that

vy + heyr € W(u" + hpug) + sk
Let s = apgr. Then y" + hpyr — argr € W(u" + hrug), which implies that (v +
hrur, y™ + hiyr — argr)(k = 1,2,--+) is boundary points of the convex set epiG. Hence,
there exist (@, ¥r) € U* X Y™, (@r,¥1) # Ousxy+(k = 1,2,-- ), such that
en(u” + hrur) + Yu(y™ + by — arge) 2 or(w) + Yi(y'), (v, 3') € epiG. (4)

By the assumption that U* and Y* are * weak compact, without loss of generality,
we assume that (¢, ¥r)—"(e, %) # Ou«xy+,(k — +00). By taking limits of (4) with
k — 400, we have

p(u") + P(y" - ag) > p(v') +P(y'), (v, y') € epiG, (5)

where a = liinak,q = li{nqk‘ If 9 = By, then ¢ # Oy« and p(u) > p(v'), v’ € U.Since

u” € intU, then we obtain by ¢(u") > ¢(u') that ¢ = 0. Therefore ¥ # fy-.
By Lemma 1 G(u) is lower semicontinuous at u”. For any y~ € G(u”") + § there exist
a sequence {yy'} C Y such that y;7 — y™ and an integer K > 0 such that

vy € G(u" + hyur) + S,k > K. (6)
By (4) we know for k > K,
er(v® + b)) + Vr(y" + Py — argr) > er(u” + heu) + (v
By taking k¥ — oo in above formula we have
W(y" —ag) > P(y™)

and
¥ € Ngun)+s+aq(¥”) C Nonryes(v)-

Note that y + k7, € G(u” + hyii) + S, y" € G(v), and hy < by, we have
y’\ + hkﬂk € G(uA + hkﬂk) + 8.
By the S-convexity of G(u) and (4) we have

er(u” + hrug) + Ye(y" + Bryr — arge) > er(v + Ritie) + Yr(y™ + ki)
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Let k — +00. Then ¢(u)+¥(y) —¥(ag) > ¢(u)+¥(7), or ¥(y) — ¥(aq) > ¥(¥), which
is a contradiction to (3).Therefore

y € Pmin[DG(u", y")(u), S].
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Benson REREX TRIEBRALHREE S

BoEW x| = M
(WRBFHERERFR, BN TE 710071)
B B ACHXTHEAEVSTH Contingent Y] REUEEIMMITIR T Z2XIRST G(u) £ Ben-
son HEXEXTHHHBER. 2 W) = Pmin[G(u), S|,y € W(u"), MERKEZ
#F DW(u",y™)(uv) C Pmin[DG(u,y")(u)], TIERBI—BEZHT DW(u", y™)(u) D
Pmin[DG(u", y")(u)].

— 412 —



