Exact Convergence Rates of Functional Modulus of Continuity of a Wiener Process * #### WANG Wen-sheng (Dept. of Math., Hangzhou Teacher's College, Zhejiang 310012, China) Abstract: Let $\{W(t), t \geq 0\}$ be a standard Wiener process and S be the set of Strassen's functions. In this paper we investigate the exact rates of convergence to zero of the variables $\sup_{0 \leq t \leq 1-h} \inf_{f \in S} \sup_{0 \leq x \leq 1} |(W(t+hx)-W(t))(2h\log h^{-1})^{-1/2}-f(x)|$ and $\inf_{0 \leq t \leq 1-h} \sup_{0 \leq x \leq 1} |(W(t+hx)-W(t))(2h\log h^{-1})^{-1/2}-f(x)|$ for any $f \in S$. As a consequence, a relation between the modulus of non-differentiability and the functional modulus of continuity for a Wiener process is established. Key words: Wiener process; functional modulus of continuity; modulus of non-differentiability. Classification: AMS(2000) 60F15,60J65,60G15,60G17/CLC O211.6 **Document code:** A **Article ID:** 1000-341X(2002)04-0507-08 ## 1. Introduction and results Let $(\Omega, \mathcal{F}, \mathcal{P})$ be a probability space, and let $\{W(t), t \geq 0\}$ be a standard Wiener process defined on it. Denote by $C_0[0,1]$ the set of continuous functions on [0,1] with value zero at the origin. Let $S \subset C_0[0,1]$ be the class of functions defined in Strassen's law of the iterated logarithm (cf. [1]), i.e., $f(x) \in S$ if and only if f(0) = 0, f(x) is absolutely continuous and $\int_0^1 (f'(x))^2 dx \leq 1$. Define $||f||_{\infty} = \sup_{0 \leq x \leq 1} |f(x)|$ for any $f \in C_0[0,1]$. Moreover, introduce the following notations: $$L(h) = \log h^{-1},$$ $$\beta_h = (2hL(h))^{-1/2},$$ $$Y_{t,h}(x) = \beta_h(W(t+hx) - W(t)), \quad 0 \le x \le 1, \quad 0 < h < 1, \quad 0 \le t \le 1 - h,$$ $$(1.1)$$ where log is the natural logarithm. The following result is the well-known modulus of continuity theorem of a Wiener process (cf. Theorem 1.1.1 in [2]): Foundation item: Supported by NNSFC (10071072) and Science Foundation of Hangzhou Teacher's College. Biography: WANG Wen-sheng (1970-), male, Ph.D., Associate Professor. ^{*}Received date: 1999-09-14 Theorem A We have $$\lim_{h\to 0} \sup_{0\leq t\leq 1-h} \sup_{0< s\leq h} \frac{|W(t+s)-W(t)|}{\sqrt{2h\log h^{-1}}} = \lim_{h\to 0} \sup_{0\leq t\leq 1-h} \frac{|W(t+h)-W(t)|}{\sqrt{2h\log h^{-1}}} = 1 \quad \text{a.s.} \quad (1.2)$$ Mueller^[3] and Chen^[4] combined Strassen's idea with Lévy's and established functional modulus of continuity for a wiener process saparately, which also imply Theorem A. They obtained Theorem B We have $$\lim_{h \to 0} \sup_{0 \le t \le 1 - h} \inf_{f \in S} ||Y_{t,h} - f||_{\infty} = 0 \quad \text{a.s.},$$ (1.3) and for each $f \in S$, $$\lim_{h \to 0} \inf_{0 < t < 1-h} ||Y_{t,h} - f||_{\infty} = 0 \quad \text{a.s.}$$ (1.4) The meaning of this theorem let us mention that: - (a) For all h small enough and for every $0 \le t \le 1 h$ the function $Y_{t,h}(x)$ can be approximated by a suitable element $f(x) \in S$ uniformly on [0,1]. - (b) For all h small enough and for any $f(x) \in S$ there exists a 0 < t < 1 such that $Y_{t,h}(x)$ will approximate the given f(x) uniformly on [0,1]. The aim of the present paper is to investigate the exact rates of convergence of (1.3) and (1.4). Consequently, however, our results are inspired by the discussions in [5-8], where they studied the rates of convergence of Strassen's law of the iterated logarithm of a Wiener process. As a consequence, we establish a relation between the modulus of non-differentiability and functional modulus of continuity for a Wiener process. For use later on, define $$I(f) = \begin{cases} \int_0^1 (f'(x))^2 dx & \text{if } f \text{ is an absolutely continuous function,} \\ \infty & \text{otherwise,} \end{cases}$$ for any $f \in C_0[0,1]$. The following is our results: **Theorem 1.1** There exists a constant $0 < \gamma < \infty$, which is independent of h, such that $$P(\sup_{0 \le t \le 1-h} \inf_{f \in S} ||Y_{t,h} - f||_{\infty} \ge \gamma(\frac{\log L(h)}{L(h)})^{2/3} \quad \text{i.o.}) = 0.$$ (1.5) **Theorem 1.2** For any $f \in S$, $$\lim_{h \to 0} \inf_{0 \le t \le 1-h} \|Y_{t,h} - f\|_{\infty} L(h) = \begin{cases} \frac{\pi}{4\sqrt{1 - I(f)}} & \text{if } I(f) < 1, \\ \infty & \text{if } I(f) = 1, \end{cases}$$ a.s. (1.6) If $f(x) \equiv 0$ in (1.6), then we have the following #### Corollary 1.1 We have $$\lim_{h\to 0} \inf_{0\le t\le 1-h} \sup_{0< s< h} \left(\frac{L(h)}{2h}\right)^{1/2} |W(t+s) - W(t)| = \frac{\pi}{4} \quad \text{a.s.}$$ (1.7) Remark 1.1 (1.7) is the well-known modulus of non-differentiability of a Wiener process proved by Csörgő and Révész (cf. [2]). The discussion of the case I(f) = 1 seems to be more difficult, we can give the best rate only if f(x) is piecewise linear. Let f(x) be a continuous broken line with f(0) = 0, and $$f'(x) = \beta_i, \quad a_{i-1} < x < a_i \quad (i = 1, 2, ..., k),$$ (1.8) where $a_0 = 0 < a_1 < a_2 < ... < a_k = 1$. **Theorem 1.3** If f(x) is defined as above and I(f) = 1, then there exist two constants c_1 and c_2 such that $$c_1 \le \lim_{h \to 0} \inf_{0 < t \le 1-h} ||Y_{t,h} - f||_{\infty} (L(h))^{2/3} \le c_2$$ a.s., (1.9) where $c_1 < \pi^{2/3} 2^{-5/3} B^{-1/3}$ and $c_2 > \pi^{2/3} 2^{-5/3} B^{-1/3}$. Here $$B = |\beta_2 - \beta_1| + \dots + |\beta_k - \beta_{k-1}| + |\beta_k|.$$ #### 2. Proofs of the theorems. The proofs are based on the following two lemmas. Lemma 2.1 Let $\varepsilon_{\lambda} := C_0(\lambda^{-2} \log \lambda)^{2/3}$ $(\lambda > 0)$, where $C_0 > 0$ is a constant. Then there exist two constants $\lambda_0 > 0$ and $h_0 > 0$ such that for any $\lambda \geq \lambda_0$ and $h \leq h_0$, $$P(\sup_{0 \leq t \leq 1-h} \inf_{f \in S} \|\frac{W(t+h\cdot) - W(t)}{\sqrt{h}} - \lambda f\|_{\infty} \geq \lambda \varepsilon_{\lambda}) \leq \frac{C}{h} \exp(-\frac{\lambda^2 (1+\varepsilon_{\lambda})^2}{2} + C\varepsilon_{\lambda}^{-1/2} \log \lambda).$$ Here, and in the sequel, C stands for a positive constant whose value is uninteresting and may vary for each appearance. **Proof** See Lemma 2.4 in [9]. □ **Lemma 2.2** For any $\delta > 0$ and $f \in S$, $$\lim_{\lambda \to \infty} \lambda^{-2} \log P(\|W - \lambda f\|_{\infty} \le \lambda^{-1} \delta) = -\frac{\pi^2}{8} \delta^{-2} - \frac{1}{2} I(f).$$ **Proof** See Theorem 3.3 in [5]. \square Now we are ready to prove the theorems. Proof of Theorem 1.1 Define $$h_n = e^{-n^{\frac{1}{3}}}, n \ge 1.$$ (2.1) -- 509 -- For any $h \in (0,1)$, there exists a positive integer n such that $h_{n+1} \leq h \leq h_n$. Then we have $$\sup_{0 \le t \le 1 - h} \inf_{f \in S} ||Y_{t,h} - f||_{\infty} \le \sup_{0 \le t \le 1 - h_{n+1}} \inf_{f \in S} ||Y_{t,h_{n+1}} - f||_{\infty} + \sup_{0 \le t \le 1 - h_{n+1}} \sup_{0 \le x \le 1} |Y_{t,h_{n+1}}(\frac{h}{h_{n+1}}x) - Y_{t,h_{n+1}}(x)| + = \sup_{0 \le t \le 1 - h_{n+1}} \sup_{0 \le x \le 1} (1 - \frac{\beta_{h_n}}{\beta_h}) |Y_{t,h_n}(x)| + 2 \sup_{f \in S} \sup_{0 \le x \le 1} |f(\frac{h}{h_{n+1}}x) - f(x)| = : I_1^{(n)} + I_2^{(n)} + I_3^{(n)} + I_4^{(n)}.$$ (2.2) By Lemma 2.1 (with $\lambda = \sqrt{2L(h_{n+1})}$), we have $$P(\sup_{0 \le t \le 1 - h_{n+1}} \inf_{f \in S} \|Y_{t, h_{n+1}} - f\|_{\infty} \ge \gamma(\frac{\log L(h_{n+1})}{L(h_{n+1})})^{2/3}) \le \frac{C}{(n+1)^2}$$ (2.3) by taking $\gamma > 0$ large enough. Hence by the Borel-Cantelli lemma we get $$P(I_1^{(n)} \ge \gamma(\frac{\log L(h_{n+1})}{L(h_{n+1})})^{2/3}$$ i.o.) = 0. (2.4) By the difinition of h_n , it is easy to see that $h_n = \exp(-\frac{n}{(L(h_n))^2}), n \ge 1$. Then we have $$1 \ge \frac{h_{n+1}}{h_n} \ge \exp\left(-\frac{1}{(L(h_n))^2}\right) \to 1 \quad \text{as } n \to \infty.$$ (2.5) Therefore $$1 - \left(\frac{h_{n+1}}{h_n}\right)^C \le \frac{C}{(L(h_n))^2}.$$ (2.6) To consider $I_2^{(n)}$ and $I_3^{(n)}$. By Theorem 1.2.1 in [2], for sufficiently large n and for any $0 < \delta < 1/4$ we have (with probability one when necessary) $$I_{2}^{(n)} \leq \sup_{0 \leq \tau \leq 2} \sup_{0 \leq s \leq h_{n} - h_{n+1}} \frac{|W(\tau + s) - W(\tau)|}{\sqrt{2(h_{n} - h_{n+1})\log(2(h_{n} - h_{n+1})^{-1})}} \times \frac{\sqrt{2(h_{n} - h_{n+1})\log(2(h_{n} - h_{n+1})^{-1})}}{\sqrt{2h_{n+1}\log h_{n+1}^{-1}}} \leq 2\frac{\sqrt{(h_{n} - h_{n+1})\log(2(h_{n} - h_{n+1})^{-1})}}{\sqrt{h_{n+1}\log h_{n+1}^{-1}}} \leq 2(\frac{h_{n}}{h_{n+1}})^{1/2+\delta}(1 - \frac{h_{n+1}}{h_{n}})^{1/2+\delta}} \leq \frac{4}{(L(h_{n}))^{1+2\delta}} \quad \text{a.s.}$$ $$(2.7)$$ Similarly, $$I_3^{(n)} \le 2(1 - \frac{\beta_{h_n}}{\beta_{h_{n+1}}}) \le 2(1 - (h_{n+1}/h_n)^{1/2}) \le 1/(L(h_n))^2$$ a.s. (2.8) Finally we consider $I_4^{(n)}$. Since $f \in S$, we have $$I_4^{(n)} \le 2 \sup_{f \in S} (I(f))^{1/2} \left(\frac{h_n}{h_{n+1}} - 1\right)^{1/2} \le 4 \left(1 - \frac{h_{n+1}}{h_n}\right)^{1/2} \le \frac{4}{L(h_n)}. \tag{2.9}$$ Combining (2.7), (2.8) and (2.9), we get $$P(I_2^{(n)} + I_3^{(n)} + I_4^{(n)} \ge \gamma(\frac{\log L(h_{n+1})}{L(h_{n+1})})^{2/3} \quad \text{i.o.}) = 0.$$ (2.10) Therefore by (2.2), (2.4) and (2.10), we obtain (1.5) and complete the proof of Theorem 1.1. \Box **Proof of Theorem 1.2** For $f \in S$, put $\kappa(f) := \frac{\pi}{4\sqrt{1-I(f)}}$. For proving (1.6), it is enough to show that for I(f) < 1 we have $$\liminf_{h \to 0} \inf_{0 < t < 1 - h} L(h) \|Y_{t,h} - f\|_{\infty} \ge \kappa(f) \quad \text{a.s.}, \tag{2.11}$$ $$\limsup_{h \to 0} \inf_{0 \le t \le 1-h} L(h) ||Y_{t,h} - f||_{\infty} \le \kappa(f) \quad \text{a.s.}, \tag{2.12}$$ and that for I(f) = 1 we have $$\liminf_{h \to 0} \inf_{0 < t \le 1-h} L(h) ||Y_{t,h} - f||_{\infty} \ge M \quad \text{a.s.}$$ (2.13) for any M > 0. At first we show (2.11). Define $h_n:=e^{-n^{1/3}}, n\geq 1$. For $\omega\in\Omega$, define $Z(h,\omega):=\inf_{0\leq t\leq 1-h}L(h)\|Y_{t,h}-f\|_{\infty}$ and $Z_n^{(1)}(\omega):=\inf_{h_{n+1}\leq h\leq h_n}Z(h,\omega)$. For any $0<\varepsilon<1$ and $\omega\in\Omega$, by the definition of infimum, there exists $\tau_n=\tau_n(\omega)\in[h_{n+1},h_n]$ such that $Z_n^{(1)}(\omega)\geq Z(\tau_n,\omega)-\varepsilon$. For convenient, we will not write the argument ω . Let u $(0 \le u \le 1)$ be arbitrary and put $x = \frac{uh_{n+1}}{\tau_n}$. Then $0 \le x \le \frac{h_{n+1}}{\tau_n} \le 1$. We can write $$\inf_{0 \le t \le 1 - h_{n+1}} \sup_{0 \le u \le 1} |W(t + uh_{n+1}) - W(t) - f(u)\beta_{h_{n+1}}^{-1}| \le \inf_{0 \le t \le 1 - \tau_n} \sup_{0 \le x \le 1} |W(t + x\tau_n) - W(t) - f(\frac{x\tau_n}{h_{n+1}})\beta_{h_{n+1}}^{-1}| \le \inf_{0 \le t \le 1 - \tau_n} \sup_{0 \le x \le 1} \{|W(t + x\tau_n) - W(t) - f(x)\beta_{\tau_n}^{-1}| + |f(x)|(\beta_{\tau_n}^{-1} - \beta_{h_{n+1}}^{-1}) + |f(x) - f(\frac{x\tau_n}{h_{n+1}})|\beta_{h_{n+1}}^{-1}| \le \beta_{h_n}^{-1} L^{-1}(h_{n+1}) Z(\tau_n) + (\beta_{h_n}^{-1} - \beta_{h_{n+1}}^{-1}) + \sqrt{2(h_n - h_{n+1}) L(h_{n+1})}.$$ (2.14) Hence, by (2.14) we have $$\liminf_{h \to 0} Z(h) \ge \liminf_{n \to \infty} Z_n^{(1)} \ge \liminf_{n \to \infty} Z(\tau_n) - \varepsilon$$ $$\ge \liminf_{n \to \infty} \beta_{h_n} L(h_{n+1}) \inf_{0 \le t \le 1 - h_{n+1}} \sup_{0 \le u \le 1} |W(t + uh_{n+1}) - W(t) - f(u)\beta_{h_{n+1}}^{-1}| - \lim\sup_{n \to \infty} \beta_{h_n} L(h_{n+1}) \{ (\beta_{h_n}^{-1} - \beta_{h_{n+1}}^{-1}) + \sqrt{2(h_n - h_{n+1})L(h_{n+1})} \} - \varepsilon$$ $$=: J_1 + J_2 - \varepsilon. \tag{2.15}$$ From (2.5) and (2.6), it is easy to see that $$J_2 = 0. (2.16)$$ Since $0 < \varepsilon < 1$ is arbitrary, for proving (2.11), it is enough to show that $$J_1 \ge \kappa(f) \quad \text{a.s.} \tag{2.17}$$ We define $$t_i = t_i^{(n)} = ih_{n+1}(L(h_{n+1}))^{-3}$$ $i = 0, 1, 2, \dots, \rho_{h_{n+1}} = [(h_{n+1})^{-1}(L(h_{n+1}))^3],$ where [x] denotes the integer part of x. For proving (2.17), we first show that $$\liminf_{n\to\infty} \min_{0\leq i\leq \rho_{h_{n+1}}} \sup_{0\leq x\leq 1} |W(t_i+h_{n+1}x)-W(t_i)-f(x)\beta_{h_{n+1}}^{-1}|\beta_{h_n}L(h_n)\geq \kappa(f) \quad \text{a.s. (2.18)}$$ By Lemma 2.2, $\forall 0 < \varepsilon < 1, \forall 0 < \delta < 1$ and sufficiently large n we have $$\begin{split} &P(\min_{0 \leq i \leq \rho_{h_{n+1}}} \sup_{0 \leq x \leq 1} |W(t_{i} + h_{n+1}x) - W(t_{i}) - f(x)\beta_{h_{n+1}}^{-1}| < (1 - \varepsilon)\beta_{h_{n}}^{-1}L^{-1}(h_{n})\kappa(f)) \\ &\leq (\rho_{h_{n+1}} + 1)P(||W - f\sqrt{2L(h_{n+1})}||_{\infty} < \frac{(1 - \varepsilon)\sqrt{2}\kappa(f)}{\sqrt{h_{n+1}}}) \\ &\leq (\rho_{h_{n+1}} + 1)\exp(-I(f)L(h_{n+1}) - \frac{1 - I(f)}{(1 - \varepsilon)^{2}}L(h_{n+1}) + \delta L(h_{n+1})) \\ &\leq Ch_{n}^{\frac{1}{(1 - \epsilon)^{2}} - (\frac{1}{(1 - \epsilon)^{2}} - 1)I(f) - 1 - \delta}(L(h_{n}))^{3}. \end{split}$$ Since I(f) < 1, we can take $\varepsilon > 0$ and $\delta > 0$ small enough such that $\frac{1}{(1-\varepsilon)^2} - (\frac{1}{(1-\varepsilon)^2} - 1)I(f) - 1 - \delta > 0$. Then, via the Borel-Cantelli lemma we get (2.18). Note that $$J_{1} \geq \liminf_{n \to \infty} \beta_{h_{n}} L(h_{n}) \min_{0 \leq i \leq \rho_{h_{n+1}}} \sup_{0 \leq x \leq 1} |W(t_{i} + h_{n+1}x) - W(t_{i}) - f(x)\beta_{h_{n+1}}^{-1}| - 2 \limsup_{n \to \infty} \beta_{h_{n}} L(h_{n}) \max_{0 \leq i \leq \rho_{h_{n+1}}} \sup_{t_{i} \leq t \leq t_{i+1}} \sup_{0 \leq x \leq 1} |W(t_{i} + h_{n+1}x) - W(t + h_{n+1}x)| = :J'_{1} - J''_{1}.$$ $$(2.19)$$ By the modulus of continuity theorem (cf. Theorem A) we have $$J_{1}'' \leq 2 \limsup_{n \to \infty} \beta_{h_{n}} L(h_{n}) \sup_{0 \leq \tau \leq 1} \sup_{0 \leq s \leq \rho_{h_{n+1}}^{-1}} \frac{|W(\tau + s) - W(\tau)|}{\sqrt{2\rho_{h_{n+1}}^{-1} \log \rho_{h_{n+1}}}} \cdot \sqrt{2\rho_{h_{n+1}}^{-1} \log \rho_{h_{n+1}}}$$ $$\leq 4 \limsup_{n \to \infty} L(h_{n}) \sqrt{\frac{h_{n+1}(L(h_{n+1}))^{-2}}{h_{n}L(h_{n})}} = 0 \quad \text{a.s.}$$ $$(2.20)$$ Combining (2.18), (2.19) and (2.20), we obtain (2.17). This implies that (2.11) is proved. Next we show (2.12). Let h_n be defined as in (2.1). Define $$t_i = ih_n, i = 0, 1, 2, ..., p_{h_n} = [h_n^{-1}].$$ We first show that $$\limsup_{n\to\infty} \min_{0\leq i\leq p_{h_n}} \|Y_{t_i,h_n} - f\|_{\infty} L(h_n) \leq \kappa(f) \quad \text{a.s.}$$ (2.21) By Lemma 2.2 (with $\lambda = \sqrt{2L(h_n)}, \delta = \frac{(1+\varepsilon)\sqrt{2}\kappa(f)}{\sqrt{L(h_n)}}$), $\forall 0 < \varepsilon < 1, \forall 0 < \delta < 1$, we have $$\begin{split} &P(\min_{0 \le i \le p_{h_n}} \|Y_{t_i,h_n} - f\|_{\infty} L(h_n) \ge (1 + \varepsilon)\kappa(f)) \\ &\le (P(\|W - f\sqrt{2L(h_n)}\|_{\infty} > \frac{(1 + \varepsilon)\sqrt{2}\kappa(f)}{\sqrt{L(h_n)}}))^{p_{h_n} + 1} \\ &\le (1 - \exp(-I(f)L(h_n) - \frac{1 - I(f)}{(1 + \varepsilon)^2}L(h_n) - \delta L(h_n)))^{p_{h_n} + 1} \\ &\le \exp(-Ch_n^{\frac{1}{(1 + \varepsilon)^2} - (\frac{1}{(1 + \varepsilon)^2} - 1)I(f) - 1 + \delta}(L(h_n))^3). \end{split}$$ Since I(f) < 1, we can take $\varepsilon > 0$ and $\delta > 0$ such that $\frac{1}{(1+\varepsilon)^2} - (\frac{1}{(1+\varepsilon)^2} - 1)I(f) - 1 + \delta < 0$. Then, via the Borel-Cantelli lemma we obtain (2.21). Note that for sufficiently large n, $$\sup_{h_{n+1} \leq h \leq h_{n}} \inf_{0 \leq t \leq 1-h} ||Y_{t,h} - f||_{\infty} L(h) \leq \sup_{h_{n+1} \leq h \leq h_{n}} \inf_{0 \leq t \leq 1-h} \sup_{0 \leq s \leq h} \beta_{h_{n+1}} L(h_{n+1}) |W(t+s) - W(t) - f(s/h) \beta_{h}^{-1}| \leq \sup_{h_{n+1} \leq h \leq h_{n}} \inf_{0 \leq t \leq 1-h_{n}} \sup_{0 \leq s \leq h_{n}} \beta_{h_{n+1}} L(h_{n+1}) |W(t+s) - W(t) - f(s/h_{n}) \beta_{h_{n}}^{-1}| + \beta_{h_{n+1}} L(h_{n+1}) (\beta_{h_{n}}^{-1} - \beta_{h_{n+1}}^{-1}) \sup_{0 \leq x \leq 1} |f(x)| + \beta_{h_{n+1}} L(h_{n+1}) \beta_{h_{n}}^{-1} \sup_{0 \leq s \leq h_{n}} |f(\frac{s}{h_{n}}) - f(\frac{s}{h_{n+1}})| \leq \min_{0 \leq i \leq p_{h_{n}}} ||Y_{t_{i},h_{n}} - f||_{\infty} L(h_{n}) + \beta_{h_{n+1}} L(h_{n+1}) (\beta_{h_{n}}^{-1} - \beta_{h_{n+1}}^{-1}) + 2\beta_{h_{n+1}} L(h_{n+1}) (1 - \frac{h_{n+1}}{h_{n}})^{1/2} =: K_{1}^{(n)} + K_{2}^{(n)} + K_{3}^{(n)}.$$ (2.22) It follows from (2.21) that $$\limsup_{n\to\infty} K_1^{(n)} \le \kappa(f) \quad \text{a.s.}$$ (2.23) From (2.5) and (2.6), it is easy to verify that $$\lim_{n \to \infty} (K_2^{(n)} + K_3^{(n)}) = 0. {(2.24)}$$ Combining (2.22), (2.23) and (2.24), we obtain (2.12). Finally, we show (2.13). Let h_n be defined as in (2.1). The proof of (2.13) is very similar to that of (2.11), and hence, is omitted. The proof of Theorem 1.2 is now complete. \Box **Proof of Theorem 1.3** The proof of (1.9) is similar to that of Theorem 3 in [6]. So the details are omitted. The proof of Theorem 1.3 is completed. \Box Acknowledgements The author wishes to express his deep gratitude to his supervisors Prof. Lin Zhengyan and Prof. Lu Chuanrong for their guidance and encouragement. ### References: - [1] STRASSEN V. An invariance principle for the law of the iterated logarithm [J]. Z. Wahrsch. Verw. Geb., 1964, 3: 211-226. - [2] CSÖRGŐ M, RÉVÉSZ P. Strong in Approximations Probability and Statistics [M]. Academic Press, New York, 1981. - [3] MUELLER C. A unification of Strassen's law and Lévy modulus of continuity [J]. Z. Wahrsch. Verw. Geb., 1981, 56: 163-179. - [4] CHEN B. Functional Limit Theorems [D]. Ph. D Thesis, Carleton of Canada, Ottawa, Canada, 1998. - [5] DE ACOSTA A. Small deviations in the functional central limit theorem with applications to functional laws of the iterated logarithm [J]. Ann. Probab, 1983, 11: 78-101. - [6] CSÁKI E. A relation between Chung's and Strassen's law of the iterated logarithm [J]. Z. Wahrsch. Verw. Geb., 1988, 54: 287-301. - [7] BOLTHAUSEN E. On the speed of convergence in Strassen's law of the iterated logarithm [J]. Ann. Probab, 1978, 6: 668-672. - [8] GOODMAN V, KUELBS J. Rate of clustering for some Gaussian self-similar processes [J]. Probab. Th. Rel. Fields, 1991, 88 47-75. - [9] WANG W S. The exact rates of convergence of functional limit theorems for Csörgő-Révész increments of a Wiener process [J]. Submitted for Publication, 1999. # 关于 Wiener 过程泛函连续模的精确收敛速度 ## 王文胜 (杭州师范学院数学系, 浙江 杭州 310012) 摘 要: 设 $\{W(t), t \geq 0\}$ 是一标准 Wiener 过程,记 S 是 Strassen 重对数律的紧集类.本文中我们讨论了两个变量 $\sup_{0 \leq t \leq 1-h}\inf_{f \in S}\sup_{0 \leq x \leq 1}|(W(t+hx)-W(t))(2h\log h^{-1})^{-1/2}-f(x)|$ 及 $\inf_{0 \leq t \leq 1-h}\sup_{0 \leq x \leq 1}|(W(t+hx)-W(t))(2h\log h^{-1})^{-1/2}-f(x)|$ (对任何 $f \in S$) 趋于零的精确的收敛速度.作为一个推广,我们建立了 Wiener 过程的不可微模与泛函的连续模之间的一种关系.