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Exact Convergence Rates of Functional Modulus of
Continuity of a Wiener Process *
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Abstract: Let {W{(t),t > 0} be a standard Wiener process and S be the set of Sjrassen’s
functions. In this paper we investigate the exact rates of convergence to zero of the
variables supocs<;_pinfes supocr<y [(W(t + ha) — W(t))(2hlog h=1)~1/2 — f(z)| and
infoce<1-h SUPge <y [(W(t + hz) — W(t))(2hlogh1)~Y/2 — f(z)| for any f € S. As a
consequence, a relation between the modulus of non-differentiability and the functional
modulus of continuity for a Wiener process is established.
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1. Introduction and results

Let (,F,P) be a probability space, and let {W(t),t > 0} be a standard Wiener
process defined on it. Denote by Cy[0,1] the set of continuous functions on [0,1] with
value zero at the origin. Let § C Cy[0,1] be the class of functions defined in Strassen’s law
of the iterated logarithm (cf. [1]), i.e., f(z) € S if and only if f(0) = 0, f(z) is absolutely
continuous and [ (f'(z))?dz < 1. Define ||f|lo = supgeq<1 |f(2z)| for any f € Co[0,1].

Moreover, introduce the following notations:

L(h) = log h™",
B = (2 L(h)) 112, (1.1)
Yin(z) = (W (+h2:)—W(t)),0§z§1,0<h<1,0§t§1~h,

where log is the natural logarithm.

The following result is the well-known modulus of continuity theorem of a Wiener
process (cf. Theorem 1.1.1 in [2]):
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Theorem A We have

b s s WEED WO Wt ) - W)
h—00<t<1-ho<s<h  y/2hlogh—! h—0o<t<1-h  /2hlogh~1!

Muellerl3l and Chen!* combined Strassen’s idea with Lévy’s and established functional
modulus of continuity for a wiener process saparately, which also imply Theorem A. They
obtained

=1 as. (1.2)

Theoremm B We have

lim sup mf IYer — flloo =0 as., (1.3)
h=0¢<t<1-hf
and for each f € S,

i inf ([Yin~ flw =0 as (1.4)

The meaning of this theorem let us mention that:

(a) For all h small enough and for every 0 < t < 1 — h the function Y; x(z) can be
approximated by a suitable element f(z) € S uniformly on [0, 1].

(b) For all h small enough and for any f(z) € S there exists a 0 < t < 1 such that
Y; 1n(z) will approximate the given f(z) uniformly on [0,1].

The aim of the present paper is to investigate the exact rates of convergence of (1.3)
and (1.4). Consequently, however, our results are inspired by the discussions in [5-8],
where they studied the rates of convergence of Strassen’s law of the iterated logarithm
of a Wiener process. As a consequence, we establish a relation between the modulus of
non-differentiability and functional modulus of continuity for a Wiener process.

For use later on, define

1
I(f) { / (f'(z))*dz if f is an absolutely continuous function,
- 0

00 otherwise,

for any f € Cy[0,1].
The following is our results:

Theorem 1.1 There exists a constant 0 < 4 < oo, which is independent of h, such that

P( sup inf Wer = flloo > (bgL( ))2/3 i.0)=0. (1.5)
0<t<1-h f L(h)

Theorem 1.2 For any f € S,

lim inf ||[Yin ~ flleo L( :{ 4\/1- i) <1, a.s. (1.6)

h—00<t<1~h lfI(f) =1,
If f(z) =0in (1.6), then we have the following
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Corollary 1.1 We have

lim inf sup (L’}:))I/ZIW(t+8)—W(t)|=

a.s. (1.7)
h—00<t<1-hg<s<h 2

N

Remark 1.1 (1.7) is the well-known modulus of non-differentiability of a Wiener process
proved by Csorgé and Révész (cf. [2]).

The discussion of the case I{f) = 1 seems to be more difficult, we can give the best
rate only if f(z) is piecewise linear. Let f(z) be a continuous broken line with f(0) = 0,

and
fl(z)=0, a1<z<a (i=12,..,k), (1.8)

where ag = 0 < a; <ay <..<a,=1.

Theorem 1.3 If f(z) is defined as above and I(f) = 1, then there exist two constants
¢1 and ¢y such that

. . _ 2/3
clﬁmog;g{_hllm fllo(L(R))*" < ez aus,, (1.9)

where ¢; < 72/3278/3B-1/3 and ¢y > n2/32-5/3B-1/3_ Here

B = |,Bz - ,51| + ...+ I,Bk “ﬂk—l' + |ﬂk'

2. Proofs of the theorems.

The proofs are based on the following two lemmas.

Lemma 2.1 Let €y := Co(A~21log A)2/% (X > 0), where Cy > 0 is a constant. Then there
exist two constants Ao > 0 and hg > 0 such that for any A > Ao and h < hy,

P( sup inf ”W(t +h) - W) M

Cex 2 log A).
0<t<1-h fES vh 2 +Ceylogd)

C
Ml 2 dex) < £ exp(-
Here, and in the sequel, C stands for a positive constant whose value is uninteresting and
may vary for each appearance.
Proof See Lemma 2.4 in [9]. O
Lemma 2.2 Forany§ >0and f€ S,

2
Jim A" log P(IW ~ Al < A716) = = 5677 - %I(f).

Proof See Theorem 3.3 in [5]. O
Now we are ready to prove the theorems.

Proof of Theorem 1.1 Define

yn > 1. (2.1)

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



For any h € (0,1), there exists a positive integer n such that h,,; < h < h,,. Then we
have

sup inf [|Ye — fllo

0<t<1-h fES
< o t®, Inf [[Vehaps = flloo + 0P oS |Y: h,.“(mc) = Yohon (@)
N A B Yo ()] + 2sup sup |f(7—=) - f(z)
=1 4 gl ’+I§”’+L{ ’. (2.2)
By Lemma 2.1 (with A = \/2L(hp41)), we have
by taking 4 > 0 large enough. Hence by the Borel-Cantelli lemma we get
P(I™ > 7(1"—?;(9,2(11’1”—5‘))2/3 i.0.) = 0. (2.4)
By the difinition of h,, it is easy to see that h,, = exp(—m),n > 1. Then we
have - )
1> 7 > exp(—m—z—) —1 asn— oo. (2.5)
Therefore - (hn+1 )C . c e
hn 7 7 (L(hn))* '

To consider Iz(,") and Ié”). By Theorem 1.2.1 in [2], for sufficiently large n and for any
0 < § < 1/4 we have (with probability one when necessary)

() [W(r+s)-W(r)l
I,7 < su su X
2 - OSTIS)2 US-’ShnghnH V2(hn ~ hnt1)1og(2(hn — hny1)™1)

\/2(hn — hny1)log(2(hy — hnya)7?)

\/2hay1log hL,

<oVt = hny1)l0g(2A by — hny1)7Y) 2 hn s hni1 /248

Vhapilogh L, T Chata hn

4
SW a.S. (2'7)
Similarly,
1 < 21— PPy < 21 = (B /hn)?) < 1/(L(B)P as. (2.8)
hns1
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Finally we consider Ii"). Since f € §, we have

(n) 1/2 hn 1/2 hoy1 1/2 4
I, 7 < 2sup(/ — -1 <4(1 - —/—— < . 2.9
< 2mmpU ()G - ) < 41 = TR < s (2.9)
Combining (2.7), (2.8) and (2.9), we get
P + 1Y 4 1M > ﬂwﬂ)z/” i.0.) = 0. (2.10)
L(hn+1)
Therefore by (2.2), (2.4) and (2.10), we obtain (1.5) and complete the proof of Theorem
1.1, O
Proof of Theorem 1.2 For f € §, put &(f) := 4—1—7r—1—m For proving (1.6), it is
enough to show that for I(f) < 1 we have
- > .S, .1
liminf ot | L(W)¥on = fllw 2 5(1) s, (211)
- < .S. .
limsup  inf L(R)|[Yen — flloo < K(f) as., (2.12)
and that for I(f) = 1 we have
liminf inf L(h)||Yth —fllo 2 M as. (2.13)

h—0 0<t<1-

for any M > 0.

At first we show (2.11). Define h, := e ", n > 1. For w € Q, define Z(h,w) :=
infoce<t—h L(R)[[Yen = flloo and Z8)(w) = infi,,, <hchn Z(h,w). For any 0 < & < 1 and
w € ), by the definition of infimum, there exists 7, = Tn(w) € [Rnt1,hn] such that
Z0(w) > Z(7,w) —e.

For convenient, we will not write the argument w. Let u (0 < u < 1) be arbitrary and

uh h
put z = —"*1 Then 0 <z < ntl < 1. We can write

Tn Tn

1/3

inf sup |W(t+ uhnyq) — W(t) - f(u)ﬂ;.}“'

0<t<l~hnt1 p<u<l

< inf Wit ” Wi(t) —
0<t1<1 Tnoiligll (t+2m) - W() f(hn+1

_ _ -1
< oo s (Wt +em) = W)~ F(@)) 1+

TTn

-1
) hu+||

Ty,

if(fv)l( = Bhny) + 1£(2) — f(

< Bior LN hn1) 2(7a) + (B} — ﬁh

)I/Bh,,+,}

)+ 2k = Bug1) Lhnsr).  (2.14)

n+1
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Hence, by (2.14) we have

liminf Z(h) > liminf ZM > liminf Z(7,) — ¢

n—oo

2 uﬂiogfﬂhnl;(hn+l)o<t<1{1fh N Oiugl W (t + uhnyr) — W(t) - f(u)ﬁ}:ﬂ1+l |-

lim sup B, L {(B) ~ Bil,,) + y/2(hn = hut1) Lhnia )} — ¢
i di 4Ty (2.15)

From (2.5) and (2.6), it is easy to see that
J2 = 0. (2.16)
Since 0 < € < 1 is arbitrary, for proving (2.11), it is enough to show that
J1 > &(f) as. (2.17)
We define
ti =t = thn g1 (L(has1)) ™ $=0,1,2, o1y, = (1) " (Llhnsa) V),

where [z] denotes the integer part of z.
For proving (2.17), we first show that

liminf min  sup |W(t; + hnp12) — W(t:) — f(:c),Bg"lH |Br, L(hn) > k(f) a.s. (2.18)

n—o0 0<i<ph, 4 0<z<1

By Lemma 2.2, V0 < € < 1,V0 < § < 1 and sufficiently large n we have

cmin sup [W(t+ hapiz) - W(t) = f(=)B7, 1 < (1= )i} L7 (ha)a(f))
<i SPhyyy 0<e<1

< (Phoyr + DPUIW = fr/2L(hpya Hoo ‘—“M)

n+1
1-I(f)
Aep”

(k).

< (Phuss + 1) exp(~I()L{kns1) - (nt1) + 6L(hns1))

<Ch,(;l_—]m (G- DI()-1

1 ( 1
(1-¢)* “(1-¢)?
1)I(f) — 1 — 6 > 0. Then, via the Borel-Cantelli lemma we get (2.18).
Note that

Since I(f) < 1, we can take ¢ > 0 and § > 0 small enough such that

Ji >liminf By, L(hs) _min  sup |W(t; + hnp1z) - W(t) - f(=)B;),, |-

0<i<ph, 4y 0<2<1

2limsup Br, L(h,) max sup sup |W(t; + hnp12z) — W(t + hnyiz)]

n—oc 0<i<ph, 4 t;<t<tiy) 0<z<1

=i~ Jl (2.19)
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By the modulus of continuity theorem (cf. Theorem A) we have

w
Ji < 2limsup By, L(h,) sup sup. Wiz + \/2ph,,+, log ph,, .,
n—oo 0<7<10<agyp; ! \/2ph..+1 log Phuyss
<4lim sup L(hn)\/h +1’(1L£(h+;)) =0 a.s. (2.20)

Combining (2.18), (2.19) and (2.20), we obtain (2.17). This implies that (2.11) is proved.
Next we show (2.12). Let h,, be defined as in (2.1). Define

t; = ihy,i=0,1,2,...,pn, = [R7'].
We first show that

hiri.s;l)po m<m 1Ye by = fllooL(hn) < &(f) aus. (2.21)
By Lemma 2.2 (with A = /2L(h,,) 6—1+—%—%M),V0<6<1,V0<6<1,wehave
P(,guin [Viun, = fllE(h) > (1+ (1)
(1+e) \/_"(f) +1
< (P(||W - 2L(hp)||oe > ~——F==""))"n
(PIW = f\/2L(hn)|l i) )
< (1~ exp(~I(£)E{ha) - %’f—g}uhn) — SL(ha)pe
< exp(—cplF mar VI gy
1

Since I(f) < 1, we can take ¢ > 0 and § > 0 such that a +£)2—((1 T 5)2—1)I(f)_1+6 <

0. Then, via the Borel-Cantelli lemma we obtain (2.21). Note that for sufficiently large n,

Y, -
h..+1SI<1£<h 0<t<1 h” th = flloo L(h)

< - — _1
e o ocitf hosi2, By Lk )W (t + 8) = W(t) - f(s/R)B; |

< _ _ -1
<, TP sup B L)W+ 8) = W(E) = f(s/ha)B 1+

S

B Lkar1) (B} = B2,,) sup |f(@)]+ Brnyy Lbns1)Bi) sup 1£(3-) = £
0<x<1 n

0<s<hy, hn+1

< B0 Yoy = Flloo L) + B, B} (G5 = B2, ) + By B )(1 = P22

0<:<p hn
= K{"’ + kM + kM. (2.22)
It follows from (2.21) that
lim sup K{n) < k(f) as. (2.23)
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From (2.5) and (2.6), it is easy to verify that

Tim (k™ + Kk{”) = 0. (2.24)

Combining (2.22), (2.23) and (2.24), we obtain (2.12).
Finally, we show (2.13). Let hy, be defined as in (2.1). The proof of (2.13) is very similar
to that of (2.11), and hence, is omitted. The proof of Theorem 1.2 is now complete. O

Proof of Theorem 1.3 The proof of (1.9) is similar to that of Theorem 3 in [6]. So the
details are omitted. The proof of Theorem 1.3 is completed. O
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X T Wiener 322 HELZRIVFRKSEE
I X K
(MM R, #L HM 310012)

BB R {W(t),t >0} B—3ME Wiener 1372, 1€ S J& Strassen X HURAM RHES. &3¢
HRAINTR T PR supocicr-ninfres supoca<i [(W(t+ hz) - W(t))(2hlog h=1)~1/2 —
f(2)] & infocsc1—n SUPo<a<y (W (E + hz) — W(t))(2h1og h=1)7/2 — f(2)|(FHEST f € S)
BT EVETARSGERE. EA T, RITEVT Wiener S BHAF G K H
EERZ M —FXR.
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