Generalized Vectorial Quasi-Equilibrium Problem on W-Space *

PENG Jian-wen1,2

- (1. Dept. of Math. Inner Mongolia University, Hohhot 010021, China;
- 2. Dept. of Math., & Comp. Sci., Chongqing Normal University, Chongqing 400047, China)

Abstract: Generalized vectorial quasi-equilibrium problem and generalized set-valued quasi-equilibrium problem are introduced and the existence theorems of generalized vectorial quasi-equilibrium problem on W-space are obtained. As corollaries, existence theorems of four kinds of quasi-equilibrium problem are obtained, and these results generalize and improve correspond results in [1-7].

Key words: generalized vectorial quasi-equilibrium; W-Space; set-valued map.

Classification: AMS(2000) 47H10,47H17/CLC O177.91

Document code: A Article ID: 1000-341X(2002)04-0519-06

1. Introduction and Preliminaries

Given a nonempty set X and bifunction $f: X \times X \to [-\infty, +\infty]$ and a set-valued map $M: X \to 2^X$, the scalar quasi-equilibrium problem(see [1-3]) is as follows:

Find
$$x^* \in X$$
,

such that $x^* \in M(x^*)$ and $f(x^*,y) \geq 0, \forall y \in M(x^*)$. When replacing the function f by vectorial-valued map $\hat{f}: X \times X \to Z$ and replacing the range space R by a real topological vector space $Z, P \subset Z$ being a pointed closed convex cone with $\inf P \neq \emptyset$, the vector quasi-equilibrium problem (see [4]) is as follows: Find $x^* \in X$, such that $x^* \in M(x^*)$ and $\hat{f}(x^*,y) \in P, \forall y \in M(x^*)$, or find $x^* \in X$, such that $x^* \in M(x^*)$ and $\hat{f}(x^*,y) \notin -\inf P, \forall y \in M(x^*)$. When replacing \hat{f} by a multi-valued map $F: X \times X \to 2^Z$, the set-valued quasi-equilibrium problem is Find $x^* \in X$, such that

$$x^* \in M(x^*) \text{ and } F(x^*, y) \not\subset -\text{int} P, \quad \forall y \in M(x^*),$$
 (1.1)

or find $x^* \in X$, such that

$$x^* \in M(x^*)$$
 and $F(x^*, y) \subset P$, $\forall y \in M(x^*)$. (1.2)

Foundation item: Supported by the Applied Basic Research Foundation of Chongqing city.

Biography: PENG Jian-wen (1967-), male, Ph.D., Associate Professor.

^{*}Received date: 1999-06-28

Let $C \subset Z$ be a nonempty cone, we will get the following set-valued quasi-equilibrium problem is Find $x^* \in X$, such that

$$x^* \in M(x^*) \text{ and } F(x^*, y) \cap C \neq \emptyset, \quad \forall y \in M(x^*),$$
 (1.3)

or find $x^* \in X$, such that

$$x^* \in M(x^*) \text{ and } F(x^*, y) \subset C, \quad \forall y \in M(x^*).$$
 (1.4)

With $C = Z \setminus -\inf P$, (1.3) contains (1.1), and with C = P, (1.4) contains (1.2). Let $F^-(C) = \{(x,y) \in X \times X : F(x,y) \cap C \neq \emptyset\}$, $F^+(C) = \{(x,y) \in X \times X : F(x,y) \subset C\}$, both problems (1.3) and (1.4) can be written as Find $x^* \in X$, such that

$$x^* \in M(x^*) \text{ and } (x^*, y) \in F^{-1}(C), \quad \forall y \in M(x^*),$$
 (1.5)

with $F^{-1} = F^{-}$ for (1.3) and $F^{-1} = F^{+}$ for (1.4).

A set-valued map $C: X \to 2^Z$ is called to be a family of domination structures in Z, if for every $x \in X$, C(x) is a nonempty cone in Z. Replacing C in (1.3) and (1.4) by a family of domination structure C(x), we will obtain a more generalized set-valued equilibrium problem is Find $x^* \in X$, such that

$$x^* \in M(x^*) \text{ and } F(x^*, y) \cap C(x^*) \neq \emptyset, \quad \forall y \in M(x^*).$$
 (1.6)

or Find $x^* \in X$, such that

$$x^* \in M(x^*) \text{ and } F(x^*, y) \subset C(x^*), \quad \forall y \in M(x^*).$$
 (1.7)

Clearly (1.6) contains (1.3) and (1.7) contains (1.4). We let

$$F_{\infty}^{-}(C) = \{(x,y) \in X \times X : F(x,y) \cap C(x) \neq \emptyset\},\$$

$$F_x^+(C) = \{(x,y) \in X \times X : F(x,y) \subset C(x)\},\$$

both problems (1.6) and (1.7) can be written as Find $x^* \in X$, such that

$$x^* \in M(x^*) \text{ and } (x^*, y) \in F_{x^*}^{-1}(C), \ \ \forall y \in M(x^*)$$
 (1.8)

with $F_x^{-1} = F_x^-$ for (1.6) and $F_x^{-1} = F_x^+$ for (1.7). It is clearly that (1.8) contains (1.5).

By using fixed point theorem on W-space, the existence theorem for generalized quasi-vectorial equilibrium problem (1.8) on W-space are obtained, as it's corollaries, existence theorems of four kinds of quasi-equilibrium problem on W-space are obtained, and these results generalize and improved the existence theorems for vectorial quasi-equilibrium problem in [1-4] and generalize and improved the existence theorems for equilibrium problem in [5-7].

Definition 1.1^[8] Let X be Hausdorff topological space and $\{C_K\}$ a family of nonempty connected subsets of X induced by finite subsets K of X such that $K \subset C_K$, then we call $(X, \{C_K\})$ be a W-space; let $(X, \{C_K\})$ be a W-space, the subset $D \subset X$ is called

W-convex if for any finite subset K of D, $C_K \subset D$; D is said to be weakly W-convex if for any finite subsets K of D, $C_K \cap D$ is connected, i.e., $(D, \{C_{K \cap D} \cap D\})$ is a W-Space.

Definition 1.2^[9] Let $(X, \{C_K\})$ be a W-space, Y be a topological spaces, a set-valued map $F: X \to 2^Y$ is said to be W-KKM map, if for any $x_1, x_2 \in X$, $F(C_{\{x_1,x_2\}}) \subset F(x_1) \cup F(x_2)$, where $F(C_{\{x_1,x_2\}}) = \bigcup_{x \in C_{\{x_1,x_2\}}} F(x)$.

Lemma 1.1^[11] Let X, Y be two Hausdorff topological spaces, and $F: X \to 2^Y$ be a set-valued map. Then F is lower semi-continuous iff for any open subset $V \subset Y, F^{-1}(V) = \{x \in X : F(x) \cap V \neq \emptyset\}$ is a open set in X.

Lemma 1.2 Let $(X, \{C_K\})$ be a W-space, Y is a nonempty subset of X, and let the setvalued map $F: X \to 2^Y$ satisfy the following conditions: (i) the map F is nonempty openvalued and W-convex valued and F is a lower semi-continuous map; (ii) $\forall y \in X, X \setminus F^{-1}(y)$ is a W-convex set; (iii) If F is transfer closed-valued, and there exists $x_0 \in X$ such that $\operatorname{Cl}(F(x_0))$ is compact, then there exists $x^* \in Y$ such that $x^* \in F(x^*)$.

Proof For any finite set $K \subset X$, $\cap_{x \in K} F(x)$ is connected from F is a W-convex valued, we can prove F is a W-KKM map, in fact, assume F isn't a W-KKM map, then there exists $x_1, x_2 \in X$, such that

$$F(C_{\{x_1,x_2\}}) \not\subset F(x_1) \cup F(x_2),$$

then there exists $y^* \in F(C_{\{x1,x2\}})$, such that $y^* \notin F(x_1)$ and $y^* \notin F(x_2)$, hence there exists $x^* \in C_{\{x1,x2\}}$, such that $y^* \in F(x^*)$, but $y^* \notin F(x_1)$ and $y^* \notin F(x_2)$, i.e.,

$$x_1, x_2 \in X \backslash F^{-1}(y^*), C_{\{x1,x2\}} \subset X \backslash F^{-1}(y^*)$$

from $X \setminus F^{-1}(y^*)$ is W-convex, hence $x^* \in X \setminus F^{-1}(y^*)$ from $x^* \in C_{\{x1,x2\}}$, i.e.,

$$y^* \notin F(x)^*$$
),

which contradicts with $y^* \in F(x^*)$, hence F is a W-KKM map,. by Theorem 2 in [9], we know that $\{F(x): x \in X\}$ has finite intersection property, by condition (iii) and from the proof of Lemma 4 of [7], we have $\bigcap_{x \in X} F(x) \neq \emptyset$, thus there exists $x^* \in Y$, such that: $x^* \in F(x^*)$.

2. Generalized vectorial quasi-equilibrium problems

Theorem 2.1 Let $(E, \{C_K\})$ be a W-space, $X \subset E$ be a nonempty weakly W-convex subset, Z be a topological space, $C:X \to 2^Z$ be a family of domination structure in Z such that int $C(x) \neq \emptyset$, $F: X \times X \to 2^Z$, $M: X \to 2^Z$ be two set valued maps, and satisfy the following conditions:

- (i) The map M is nonempty open-valued and W-convex valued, and M is a lower semi-continuous map;
 - (ii) $\nabla = \{x \in X : M(x) \cap Q(x) \neq \emptyset\}$ is a closed set, where

$$Q(x)=\{y\in X: (x,y)\notin F_x^{-1}(C)\}, \forall x\in X;$$

- (iii) For all $x \in X$, Q(x) is a W-convex set;
- (iv) $F_x^{-1}(C)$ is a closed set;
- (v) $\forall x \in \nabla, (x,x) \in F_x^{-1}(C);$
- (vi) M is transfer closed-valued on $X \setminus \nabla$, $M \cap Q$ is transfer closed-valued on ∇ ;
- (vii) $\forall y \in X$, for any finite subset $K \subset X$ and any $x \in C_K \setminus K$, $M(x) \cap Q(x) \neq \emptyset$ and $y \notin M(x) \cap Q(x)$;
- (viii) There exists $\hat{x} \in X$, such that if $\hat{x} \in \nabla$, then $Cl(M(\hat{x}))$ is a compact set, if $\hat{x} \in X \setminus \nabla$, then $Cl((M(\hat{x}) \cap Q(\hat{x}))$ is a compact set.

Then there exists $x^* \in X$ such that $x^* \in M(x^*)$ and $(x^*, y) \in F_{x^*}^{-1}(C)$ for all $y \in M(x^*)$.

Proof $(X, \{C_{K\cap X}\cap X\})$ is a W-space from X is a weakly W-convex set, define set-valued map $T: X \to 2^X$ as $T(x) = M(x) \cap Q(x)$, $\forall x \in X$, then the Graph of Q is an open set from (iv), so T is lower-semicontinuous from (i) and lemma 4.2 in [12], for all $x \in X$, M(x) and T(x) be open and W-convex sets from above and (i), define set-valued map

$$S:X o 2^X ext{ as: } S(x)=\left\{egin{array}{ll} T(x), & x\in
abla\ M(x), & x\in Xackslash
abla\ V \end{array}
ight.$$
 , then $orall x\in X$, the set $S(x)$ is a nonempty

open and W-convex subset, we can prove that S is a lower-semicontinuous map, in fact, for any open set $V \subset X$, the set

$$\begin{aligned} \{ \boldsymbol{x} \in X : S(\boldsymbol{x}) \cap V \neq \emptyset \} &= \{ \boldsymbol{x} \in \nabla : T(\boldsymbol{x}) \cap V \neq \emptyset \} \cup \{ \boldsymbol{x} \in X \setminus \nabla : M(\boldsymbol{x}) \cap V \neq \emptyset \} \\ &= \{ \boldsymbol{x} \in X : T(\boldsymbol{x}) \cap V \neq \emptyset \} \cup ((X \setminus \nabla) \cap \{ \boldsymbol{x} \in X : M(\boldsymbol{x}) \cap V \neq \emptyset \}) \end{aligned}$$

is an open set from the lower-semicontinuous of M and T and the condition (ii) and lemma 1.1, hence S is a lower-semicontinuous map, so the condition (i) of lemma 1.2 is satisfied. we can prove for all $y \in X, X \setminus S^{-1}(y)$ is a W-convex set, in fact, if there exists $y \in X$, such that $X \setminus S^{-1}(y)$ isn't a W-convex set, then there exists finite subset $K \subset X \setminus S^{-1}(y)$ and there exists $x \in C_K \setminus K$ such that $x \notin X \setminus S^{-1}(y)$, i.e., $y \in S(x)$, by condition (vii) we have $M(x) \cap Q(x) \neq \emptyset$ and $y \notin M(x) \cap Q(x)$, so $y \notin S(x)$, contradict to $y \in S(x)$, hence $X \setminus S^{-1}(y)$ is W-convex, so the condition (ii) of lemma 1.2 is satisfied. We can prove S is transfer closed valued, in fact, $\forall x \in X$, if $y \notin S(x)$, if $x \in \nabla$ then

$$y \notin S(x) = (M \cap Q)(x),$$

hence there exists $x_0 \in \nabla$ such that

$$y \notin \mathrm{Cl}(M \cap Q)(x_0) = \mathrm{Cl}(S(x_0))$$

from the transfer closedness of $M \cap Q$, for the same reason if $x \in X \setminus \nabla$, there exists $x_0 \in X \setminus \nabla$, such that

$$y \notin \mathrm{Cl}(M(x_0)) = \mathrm{Cl}(S(x_0)),$$

hence $\forall x \in X$, if $y \notin S(x)$ then there exists $x_0 \in X$ such that $y \notin \operatorname{Cl}(S(x_0))$, i.e., S is transfer closed valued. there exists $\hat{x} \in X$ such that $\operatorname{Cl}(S(\hat{x}))$ be a compact set from (viii), so the condition (iii) of lemma 1.2 is satisfied, by lemma 1.2, there exists $x^* \in X$ such that $x^* \in S(x^*), \forall x \in \nabla, x \notin Q(x)$ from (v), then $\forall x \in \nabla, x \notin T(x)$, hence $x^* \notin \nabla$, by the definition of S we have $x^* \in M(x^*)$ and $M(x^*) \cap Q(x^*) = \emptyset$, i.e., $x^* \in M(x^*)$ and $(x^*, y) \in F_{x^*}^{-1}(C), \forall y \in M(x^*)$. \square

Theorem 2.1 generalizes and improves the existence of generalized vector equilibrium problem in [5] from H-space to W-space. If we choose

$$C(x) = Z \setminus -\inf P(x)$$
 and $F_x^{-1} = F_x^-$,

then

$$(x,y) \in F_x^{-1}(C) \Leftrightarrow F(x,y) \not\subset -\mathrm{int} P(x), (x,y) \notin F_x^{-1}(C) \Leftrightarrow F(x,y) \subset -\mathrm{int} P(x).$$

So from theorem 2.1, we have corollary 2.2, which is the existence theorem of generalized set-valued quasi-equilibrium problem, and the generalized set-valued equilibrium problem in [6] is special case of generalized set-valued quasi-equilibrium problem; if we choose $C(x) = Z \setminus -\inf P$ and $F_x^{-1} = F_x^-$, we can easily get the existence theorem of another kind of set-valued quasi-equilibrium problem which is the generalization of set-valued equilibrium problem in [5], from theorem 2.1, we can also get the existence theorems of scalar quasi-equilibrium problem and vector quasi-equilibrium problem on W-space which are the generalization of quasi-equilibrium problem in [1-4], and we omit these results here.

Corollary 2.2 Let $(E, \{C_K\})$ be a W-space, $X \subset E$ be a nonempty weakly W-convex subset, Z be a topological space, $P: X \to 2^Z$ be a family of domination structure in Z such that $\operatorname{int} P(x) \neq \emptyset$, $F: X \times X \to 2^Z$, $M: X \to 2^Z$ be two set valued maps and satisfy the following conditions:

- (i) M is a nonempty open-valued and W-convex valued and lower semi-continuous map:
 - (ii) $\nabla = \{x \in X : M(x) \cap Q(x) \neq \emptyset\}$ is a closed set, where

$$Q(x) = \{y \in X : F(x,y) \subset -\mathrm{int}P(x)\}, \forall x \in X;$$

- (iii) For all $x \in X$, Q(x) is a W-convex set;
- (iv) $\{(x,y) \in X \times X : F(x,y) \subset -intP(x)\}\$ is a open set;
- (v) $\forall x \in \nabla$, $F(x,x) \not\subset -\mathrm{int}P(x)$;
- (vi) M is transfer closed-valued on $X \setminus \nabla$; $M \cap Q$ is transfer closed-valued on ∇ ;
- (vii) $\forall y \in X$, for any finite subset $K \subset X$ and any $x \in C_K \setminus K$, $M(x) \cap Q(x) \neq \emptyset$ and $y \notin M(x) \cap Q(x)$;
- (viii) There exists $\hat{x} \in X$, if $\hat{x} \in \nabla$, then $Cl(M(\hat{x}))$ be a compact set, if $\hat{x} \in X \setminus \nabla$ then $Cl((M(\hat{x}) \cap Q(\hat{x}))$ be a compact set.

Then there exists $x^* \in X$ such that $x^* \in M(x^*)$ and $F(x^*, y) \not\subset -int P(x^*)$ for all $y \in M(x^*)$.

Acknowledgments The author expresses his sincere thanks to Professor Yang Xinmin for help.

References:

[1] Paolo cubiotti. Existence of nash equilibria for generalized games without upper semicontinuity [J]. International Journal of Game Theory, 1997, 26(2); 267-273.

- [2] AUBIN J P, EKLAND I. Applied Nonlinear Analysis [M]. New York: A Wiley-Interscience, 1984.
- [3] ZHOU J Z, CHEN G. Diagonal convexity conditions for problems in convex analysis and quasi-variational inequalities [J]. J. Math. Anal. Appl., 1988, 132: 213-225.
- [4] LIN L J, PARK S. On some generalized quasi-equilibrium problems [J]. J. Math. Anal. Appl., 1998, 224: 167-181.
- [5] ANSARI Q H, OETTLI W, SCHLÄGER D. Generalization of vectorial equilibria [J]. Mathematical Methods of Operations Research, 1997, 46: 147-152.
- [6] OETTLI W, SCHLÄGER D. Existence of equilibria for monotone multivalued mappings [J]. Mathematical Methods of Operations Research, 1998, 48 (2): 219-228.
- [7] PENG Jian-wen. Equilibrium problems on W-space [J]. Mathematica Applicata, 1999, 12(3): 86-92. (in Chinese)
- [8] CHANG S S, LEE G M, LEE B S. Minimax inequalities for vector-valued mappings on W-Spaces [J]. J. Math. Anal. Appl., 1996, 198: 371-380.
- [9] LIU Nai-gong. Noncompacted KKM theorem and applications on W-Space [J]. Journal of Engineering and Mathematics, 1998, 15(3): 103-108. (in Chinese)
- [10] TIAN G Q. Generalizations of the FKKM theorem and the Ky Fan minimax inequality, with applications to maximal elements, price equilibrium, and complementarity [J]. J. Math. Anal. Appl., 1992, 170: 457-471.
- [11] HIRIART-URRUTY J B. Images of connected sets by semicontinuous multifunctions [J]. J. Math. Anal. Appl., 1985, 111: 407-422.
- [12] YANNELIS N C. Equilibria in noncooperative models of competition [J]. J Economoc Theory, 1987, 41: 96-111.

W- 空间上的广义向量拟平衡问题

彭建文1,2

- (1. 内蒙古大学数学系, 内蒙古 呼和浩特 010021;
- 2. 重庆师范学院数学与计算机科学系, 重庆 400047)

摘 要: 引入了广义向量拟平衡问题和广义集值拟平衡问题,得到了W-空间上广义向量拟平衡问题的存在性定理,作为推论,得到了W-空间上四类拟平衡问题的存在性定理,这些结果推广和改进了文献[1-7]的相应结果.