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Abstract: In this paper, blow-up estimates for a class of quasilinear reaction-diffusion
equations(non-Newtonian filiration equations) in term of the nonexistence result for
quasilinear ordinary differential equations are established to extends the result for semi-
linear reaction-diffusion equations(Newtonian filtration equations).
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The purpose of this paper is to derive a bound for the rate of blow-up of solutions to
the Non-Newtonian filtration equation

u = div(| Y ul 2 v u) + u™ - uPl (1)

or

up = div(| 7 w7 7 u) + u™, (1)

where u > 0,m > p — 1,p > 2. The blow up rate estimates of positive radial solutions
were established by Weissler in [1] for the (1) or (1)’ with p = 2. In this paper, we get the
same result for the (1) or (1)’ with p > 2. Then, it extents and complement the result in
1. |

This problem appears in the study of non-Newtonian fluids([2,3]) and nonlinear filtra-
tion theory ([4]). In the non-Newtonian fluids theory, the quantity p is a characteristic of
the madium. Media with p > 2 are called dilatant fluids and those with p < 2 are called
pseudoplastics. If p = 2, they are Newtonian fluids.

Let B(p) denote the open ball in R of radius p, center at 0. Also, for T > 0, let
I' = I'(p,T) = B(p) x (0,T) c RN+1, A typical point in T is denoted by (z,t), with
z € B(p) and t € (0,T).
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Theorem 1 Suppose for p > 0 and T > 0 the function u : T'(p,T) — R satisfies:

(a) u € CYT') and u has continuous second order z-derivatives throughout T;

(b) w>0and uy >0inT;

(c) for each t € (0,T),u(-,t) is radially symmetric and nonincreasing as a function
r=|zf;

(d) for eacht € (0,T),us(-,t) achieves its maximum at z = 0;

(e) wu satisfies (1) or (1)’ throughout T;

(f) w(0,t) > 0 ast—T.

Assume that N =2,p>2;m>00or N >p,p>2,p—-1<m< ﬂ%ﬂ. Then there
exists a constant C > 0 such that

u(z,t) < C(T - ¢)~Y/(m-1) (2)

for all (z,t) € T.
To prove the main Theorem 1, we give the following lemma

Lemma 1 Letm > p-1,p> 2 and N > 2, and suppose N/p < (m+1)/(m—p+ 1)(that
ism < M%:_lpﬁe)’ then there does not exist a positive C! function v(r) : [0,00) — R with
v'(0) = 0 and
np—2,/\/ N-1 p—-2,/ m

(WP v)+—r—|v|” v +0v™(r)=0, r>0. (3)

Proof Suppose there exists such a function v, then
(,’,N—l(}p(vl))/ + rN—-l,vm(,’,) — 0’

and

PV18 (v)(r) = — /Or sV1y™(s)ds. (4)

where &,(v) = |v[P~2v. We first dispense with the case N < p. Using (4), we see that if

r > 1, then
vl(r) S _Cl/(p_l)r(l_N)/(p—l)

for some C' > 0. Integrating, we get
v(r) < v(1) + CYP=Y(p - 1)/(N — p)(rP~-NV/(e-1) _q),

and so v(r) — —oo as » — o0o. This contradicts v(r) > 0 and proves the lemma 1 for
N <p.
Now suppose N > p. Formula (4) implies that v(r) is decresing and therefore that

_rN-1g (o) = / N1y (s)ds > Vo™ (r)/N,
0

or
v/(r) < —(1/N )V =Dt/ lp=D)ym/(p=1)(5),

This inequality is easily integrated to give
omPAD(P=Y) <y — p 4 )NV P~ V)p—p/ (p1),
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In particular,
lim sup r?/(m=P*y(r) < +o0. (5)

r—+4o00

At this point we use the hypothesis that N/p < (m +1)/(m — p+ 1). This, along with (5)
implies that

+ o0
/ N1y (7)dr < +o00. (6)
0
We multiply (3) by »~'v(r) and use the identity
(P18, (' )o) = (N = )V =28,(u')o + PN (@, ()0 + PV o',

This gives
(TN_IQP(’U,)’U)/ . TN—llv’lp + rN—lvm«f—l = 0.

Integrating from 0 to r we get
—rN=1g (v )o(r) + / sV (s)Pds = / sV 1y™H(5)ds. (7)
0 0
Since v(r) > 0 and v/(r) < 0, formulas (6) and (7) imply

O N1 e T NC1 mt1
sV T |Pds < sV T (s)ds < +oo. (8)
0 0
We multiply (3) by »Vv/(r) and use the identities
(PN PY = NeV o' P 4 prP |0 [P 10"
(vam+p—1)l — NrN—lvm+p—1 + (m + p— 1)vam+p——2vl‘

This gives
d N rNymip-l N N-1 m+p—1
dr(r IUI/P+m+p—1)-(m+p——1)r v *

N
—;rN"llv'[” + Vo™ P2 L 1/ (p = 1)(—(N = 1)PN 1 o')P — PN ™).

Integrating from 0 to z we get

rN[v,V’ T'Nvm+p-1(7‘) _ N /r sN-1ymtp-1qgy
P m+p-1  (m+p-1)Jo
N N-1 7/° r r
(— - ——)/ sN“liv'V’ds—I—/ sVomtP=2y/ds — 1/(p - 1)/ sNom'ds,
p p-1 0 0 0
then
N N
rV|u'|P r V(1)
p (p-1)(m+1)
N N-1 T N-1 'p T N—
- —— —— d 1 m+1 . .
(p p—l)/os [v'] 5+————(p—1)(m+1)/os v TH(s)ds 9
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Let h(r) = N |v'|?/p + (p—_l-;(]jn—ﬂ)v"‘“(r), by (8) and (9) we see lim,_,» h(z) = [ exists.

Furthermore, again by virtue of (8), we have that [{° ¢t 'h(t)ds < +oo; and so I = 0. Thus
letting » — +o00 in (9) yields

N foo N-1 N, [+o
————————(p_ Dm T D /o sV-1y t1(s)ds = (———p_ T ;)/0 N 1o/ |Pds.
Finally, (6) and (8) together imply

N/p2(m+1)/(m-p+1)

This contradicts the hypothesis that N/p < (m + 1)/(m — p + 1), and thereby proves the
Lemma 1.

The proof of Theorem 1 is based upon modification of methods of Weissler [1] used to
prove Theorem.

-Proof of the Theorem 1 We consider equation (1)(Eq.(1)’ being similar). For 0 < t <
T, let a(t) = u(0,t)(™~P+1)/P; then a(t) — co ast — T. For t € (0,T) and y € B(pa(t)),

. (/a(t),t)
_uly/alt),t
’U(y,t) - U(O,t) N
Since 0 < u(z,t) < u(0,t), it follows that
0<v(y,t) <1 (10)

Furthermore, a routine calculation shows that

_ [u(y/a(t),t) + v (y/a(t), )]
u™(0,t) )

div(| 7 v[P~* 7 v) + 0™ (y,t)
Hypotheses (b) and (d) therefore imply that
0 < div(| 7 vfP72 7 v) + v™(y, 1) < (ue(0,2) + wP77(0,2))/u™(0,2). (11)
Since u(-,t) is radially symmetric, the same is true for v(-,t); and thus we may set
v(y,t) = w(r,1),
where |y| = 7 and 0 < r < pa(t). Note that for each t € (0,T), w(-,¢) is a C? function on
[0, par(t)] with w(0,t) = 1 and w,(0,t) = 0. Rewriting (10) and (11) in terms of w, we get
0 <w(rt) <1, (12)
u(0,t) + wP~1(0,)
u™(0,t) ’

where w, the derivative of w with repect 7. Furthermore, w, < 0 by hypothesis (c), and
so (13) implies

0 < (Bp(wn)), + (N = 1)/r&,(w,) + w™ <

(13)

(®p(we))rwr + (N = 1)/r|w, [P + w™w, <0,

— 10 —
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which in turn says that

2 ((p = 1)plwl 4w (4 1)) < (N = 1)/rhu P <0

Integrating this last inequality from 0 to r shows that

(p - 1)/plw, [P + w™/(m+1) < 1/(m +1),

and thus »
(7, 1)| < (———)1/P, 14
wrlr, 1)) € () (14
We now claim that 0
lim inf (%8 . (15)

t—T u'"(O,t)

We proceed by contradiction as in [1]. Suppose ¢, is a sequence in (0,T) with ¢, — T as

n — oo and (0.4)
Uy 5tﬂ

oo ———=— = 0. 16

o<>u’"(O,tﬂ) (16)

By using the Ascoli-Alzela theorem, we know that there is a subsequence, which is still
called t,,, and a function w € C([0, 00)) such that w(-,¢,) — W uniformly on compact
subsets of [0,00). In particular, because of the properties of each w(-,t,), we know that
w > 0,w(0) = 1, and W is nonincreasing on [0,00). Moreover, formula (14) implies that

each w(-, t,) is Lipschitz with a Lipschitz constant of(mﬁm—ﬂj)l/”. The same is therefore

true of W, and so W is absolutely continuous on [0,00). Next we consider w(-,t,) and w
as distributions on (0,00). (Let w(r,t,) = 0 for » > pa(t,).) Clearly, w(-,t,) — W in the
sence of distributions; and hence

lim,,

Wy ta) = Tr (Bp(w))e(ta) = (8(T))s,
in the sence of distributions. Thus, formulas (13) and (16) imply that
(8,(@) + (N = 1)/rd,(@,) + T™ = 0, (a7)
as distributions on (0, c0). This can be rewritten as
(N1, (w, ), + vV @™ = 0. (18)

Since W is absolutely continuous, it follows immediately from (17) that @ is C* on (0, 00).
In particular, since W > 0, the local existence and uniqueness of C? solutions of (18) on
(0, 00) guarantee that w > 0 on (0, 00).

If N = 2,p > 2, we proceed as follows. From Eq (18), we infer that r&,(w,) are
decreasing, and that there exist M < 0 and ry > 0 such that

r®,(w,) < M for r € (rg,+00).

— 11 —
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The last inequality implies that

W(s) > W(s) — w(t) > (- M)/ -1 /;t,.—l/(p—l)d,.

= (= M)V =D ((p=2)/(p-1) _ 4(p=2)/(p-1)) (19)
for ro < s <'t. Letting t — +00 in (19), we obtain a contradiction.
If N = 2,p =2, a similar argument implies that
w(s) > w(s) —w(t) > (- M)[In(¢) - In(s)]

for rg < s <t. Letting t — 400 in last inequality, we obtain a contradiction.
In the case N > p we derive a contradiction as follows. Let 0 < R < r and integrate
(18) from R to r. This gives

N8, (@)(r) - RV 8, (w)(R) = - [ NI (s)ds (20)

Since W is continuous at 0, it follows that limp_,o R¥N ~'@2~1(R) = L exists. Note that L
must in fact be zero. Indeed , if L # 0, then @, < 0 would not be integrable near » = 0
and then W would not be continuous at » = 0. Thus, letting R — 0 in (20) gives

&,(w,)(r) = —r'-N /0 "Nl (s)ds, (21)

for all » > 0. Using (17) and (21), one can easily check that w € C*[0, 00) with w;(0) = 0.
From Lemma 1, since
N/p<(m+1)/(m-p+1),

there is note positive C! function on [0, c0) with zero derivative at 0 which satisfies (18)

for all » > 0. Thus W cannot exist.
These contradictions show that formula (15) is indeed correct. Thus, there exists ¢ > 0
such that, for all t € (0,T) close enough to T,

ut(O,t),
> 0.
(0,8) - 7
This can be rewritten as
(u*™(0,8)); < —(m - 1)e. (22)

Since lim,_,r u'~™(0,t) = 0, integrating (22) from ¢ to T yields
ul™™ > ¢y (T - t) (23)

for t close to T. Finally, hypotheses (b) and (c) in the theorem, along with formula (23),
show that
u(z,t) < C(T — t)~V/(m-1)

for all (z,t) € T'. This completes the proof of the theorem.
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Finally, we give lower bounds for the blow-up rates.

Teorem 2 Assume that the conditions (a)-(f) in Theorem 1 hold. Then there are positive
constants ¢y,8 such that

u(0,2) > e5(T — ¢) 7+
fort € (8,T).

Proof We consider equation (1)(Eq.(1)’ being similar). From (1) and consider (c), we
get
(p— D~ 2" + (N = 1)/r|/ P72 + o™ — P! = uy. (24)

Since " < 0 at » = 0 with t € (0,T), we see from (24) that
u(0,t) < u™(0,t) — vP1(0,¢),

hence (0.2)

usY,

—_— - ——= < 1. 25

wr(0,2) —  wmeptl = (25)
Integrating (25) over (t,s) C (8,T) and leting s — T', we get by condition (f) of Theorem
1

u(0,t) > ¢o(T — t)~/(m=1),

Remark 1 Combining Theorem 1 and Theorem 2, we conclude that the blow-up rates
of radial positive solutions of the (1) or (1)’ under the conditions of the theorems are

u(0,t) = O((T — t)~1/(m=1),
as t tends to T'.
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