Systems of Matrix Equations over a Central Algebra *

WANG Qing-wen, LI Shang-zhi

(Dept. of Math., University of Science and Technology of China, Hefei 230026, China)

Abstract: Let Ω be a finite dimensional central algebra with an involutorial antiautomorphism and chart $\Omega \neq 2$. Two systems of matrix equations over Ω are considered. Necessary and sufficient conditions for the existences of general solutions, and per(skew)selfconjugate solutions of the systems are given, respectively.

Key words: central algebra; system of matrix equations; per(skew)selfconjugate matrix; regular matrix quadruple.

Classification: AMS(2000) 15A24, 15A33/CLC number: O151.21

Document code: A **Article ID:** 1000-341X(2003)01-0015-06

1. Introduction

Throughout this paper, we denote a finite dimensional central algebra with an involution σ [1, p.112, Definition 1] over a field F by Ω and chart $\Omega \neq 2$, the set of all $m \times n$ matrices over Ω by $\Omega^{m \times n}$, the set of all $n \times n$ invertible matrices over Ω by $GL_n(\Omega)$, the set of all $m \times n$ matrices over $\Omega[\lambda]$ by $\Omega^{m \times n}[\lambda]$, and an $i \times i$ identity matrix by I_i .

Let $A = (a_{ij}) \in \Omega^{m \times n}$, $A^* = (\sigma(a_{m-j+1,n-i+1})) \in \Omega^{n \times m}$. Then $A \in \Omega^{n \times n}$ is called per(skew)selfconjugate if $A = A^*(-A^*)$. The set of all per(skew)selfconjugate matrices is denoted by $\mathbf{C}_n \mathbf{S}_n$).

For matrices A, B over Ω , it is easy to verify that $(A^*)^* = A, (AB)^* = B^*A^*$. Define $(A^*)^{-1} = A^{-*}$ if A is invertible. Suppose $A, B \in \Omega^{n \times n}, C, D \in \Omega^{m \times m}$, then (A, B, C, D) is called a regular matrix quadruple if there exists $\lambda \in F$ such that $A + \lambda B, C + \lambda D$ are invertible.

Many problems in systems and control theory require the solution of Sylvester's matrix equation AX - XB = C or its generalization AX - YB = C. W. E. Roth [2] gave necessary and sufficient conditions for the consistency of the two matrix equations. The matrix equation AXB - CXD = E appears in the numerical solution of implicit ordinary differential equations [3].

Biography: WANG Qing-wen (1964-), male, Ph.D., Professor.

^{*}Received date: 2000-02-25

Foundation item: Supported by the National Natural Science Foundation of China (10071078) and Natural Science Foundation of Shandong Province (Q99A08)

In this paper, the following systems of matrix equations over Ω

$$\begin{cases} A_1 X^* - X B_1 = C_1 \\ A_2 X^* - X B_2 = C_2 \end{cases}, \tag{1.1}$$

$$\begin{cases}
A_1 X B_1 - C_1 X D_1 = E_1 \\
A_2 X B_2 - C_2 X D_2 = E_2
\end{cases} ,$$
(2.2)

are considered. Necessary and sufficient conditions are given for the existences of general solutions to (1.1), and a per(skew)selfconjugate solution to (1.2). As a particular case, auxiliary results dealing with the system of Sylvester equations over Ω are also presented.

2. Main results

To begin with the following

Theorem 2.1 Let $A \in \Omega^{m \times n}[\lambda], B \in \Omega^{n \times m}[\lambda], C \in \Omega^{m \times m}[\lambda]$. Then the matrix equation

$$AX^* - XB = C \tag{2.1}$$

has a solution X over Ω if and only if there exist $Q \in GL_{n+m}(\Omega)$ such that

$$\begin{bmatrix} -A & -C \\ O & B \end{bmatrix} = Q^* \begin{bmatrix} -A & O \\ O & B \end{bmatrix} Q. \tag{2.2}$$

Proof Suppose that

$$M_0 = \left[egin{array}{cc} A & O \ O & B \end{array}
ight], M_c = \left[egin{array}{cc} A & C \ O & B \end{array}
ight], J = \left[egin{array}{cc} -I_m & O \ O & I_n \end{array}
ight].$$

Let the matrix (2.1) have a solution X over Ω and

$$Q = \left[\begin{array}{cc} I_n & X^* \\ O & I_m \end{array} \right], S = \left[\begin{array}{cc} I_m & X \\ O & I_n \end{array} \right].$$

Then it is easy to verify that

$$M_0Q = SM_c, Q^*JS = J.$$
 (2.3)

Hence

$$Q^*JM_0Q = JM_c, (2.4)$$

i.e., (2.2) holds.

Conversely, let (2.2) hold, i.e., (2.4) hold, and $S = J^{-1}Q^{-*}J$. Then (2.3) holds. Suppose that

$$U = \begin{bmatrix} U_1 & U_{12} \\ U_{21} & U_2 \end{bmatrix} \begin{matrix} n \\ m \end{bmatrix} \in \Omega^{(m+n)\times(m+n)}, V = \begin{bmatrix} V_1 & V_{12} \\ V_{21} & V_2 \end{bmatrix} \begin{matrix} m \\ n \end{bmatrix} \in \Omega^{(m+n)\times(m+n)}, \quad (2.5)$$

then

$$U^* = \left[egin{array}{ccc} U_2^* & U_{12}^* \ U_{21}^* & U_1^* \end{array}
ight] egin{array}{ccc} m & n \end{array} \in \Omega^{(m+n) imes(m+n)}, V^* = \left[egin{array}{ccc} V_2^* & V_{12}^* \ V_{21}^* & V_1^* \end{array}
ight] egin{array}{ccc} n & \in \Omega^{(m+n) imes(m+n)}. \end{array}$$

Let

$$T_c = \{(U, V) | M_0 U = V M_c, J U^* J M_0 = M_c J^* V^* J^* \}.$$
 (2.6)

Then for $(U, V) \in T_c$, we have the following

$$\begin{cases}
AU_{1} - V_{1}A = 0 \\
BU_{21} - V_{21}A = 0 \\
AU_{12} - V_{1}C - V_{12}B = 0 \\
BU_{2} - V_{21}C - V_{2}B = 0 \\
AV_{2}^{*} - U_{2}^{*}A = CV_{21}^{*} \\
AV_{12}^{*} - U_{12}^{*}B = CV_{1}^{*} \\
U_{21}^{*}A - BV_{21}^{*} = 0 \\
U_{1}^{*}B - BV_{1}^{*} = 0
\end{cases}$$
(2.7)

It is easy to verify that T_c is a finite dimensional linear space over F with scalar multiplication and addition defined as follows:

$$(U,V)b = (Ub,Vb), b \in F, (U_1,V_1) + (U_2,V_2) = (U_1 + U_2,V_1 + V_2).$$

For C=0, let T_0 be defined by (2.6). According to (2.3), it is not difficult to verify that

$$(U,V) \in T_c \Leftrightarrow (UQ^{-1},VS^{-1}) \in T_0.$$

So,

$$\dim T_c = \dim T_0. \tag{2.8}$$

Define a linear map $f: \Omega^{(m+n)\times (m+n)} \times \Omega^{(m+n)\times (m+n)} \to \Omega^{(m+n)\times m}$ by the following

$$f(U,V) = \left[\begin{array}{c} V_1 \\ V_{21} \end{array} \right].$$

It is obvious that in the case C=0 we have $(U,V)=(I_{m+n},I_{m+n})\in T_0$ and therefore

$$\left[\begin{array}{c}I_m\\0\end{array}\right]\in f(T_0). \tag{2.9}$$

Let $f_c = f|_{T_c}$, $f_0 = f|_{T_0}$. Then it follows from (2.7) that

$$\ker f_c = \ker f_0. \tag{2.10}$$

Suppose U and V are as in (2.5) and

$$K = \begin{bmatrix} U_1 & 0 \\ U_{21} & 0 \end{bmatrix}, L = \begin{bmatrix} V_1 & 0 \\ V_{21} & 0 \end{bmatrix},$$

$$- 17 -$$

then it follows from (2.7) that if $(U,V) \in T_c$, then $(K,L) \in T_0$. Hence we have

$$\operatorname{Im} f_c \subseteq \operatorname{Im} f_0. \tag{2.11}$$

It follows from (2.8), (2.10) and

 $\operatorname{dimker} f_c + \operatorname{dimIm} f_c = \operatorname{dim} T_c$, $\operatorname{dimker} f_0 + \operatorname{dimIm} f_0 = \operatorname{dim} T_0$

that dimIm $f_c = \text{dimIm} f_0$. Therefor (2.11) yields Im $f_c = \text{Im} f_0$, i.e. $f(T_c) = f(T_0)$. By (2.9), $\begin{bmatrix} I_m \\ 0 \end{bmatrix} \in f(T_c)$. Consequently there exists $(U, V) \in T_c$ such that $V_1 = I_m$. In view of (2.7), we have

$$AU_{12} - V_{12}B = C, (2.12)$$

$$AV_{12}^* - U_{12}^*B = C. (2.13)$$

Let

$$X = \frac{1}{2}(V_{12} + U_{12}^*). {(2.14)}$$

Then X is a solution over Ω of the matrix equation (2.1).

Corollary 2.2 Let $A \in \Omega^{m \times n}$, $B \in \Omega^{n \times m}$, $C \in \Omega^{m \times m}$. Then the matrix equation (2.1) is consistent if and only if there exist $Q \in GL_{n+m}(\Omega)$ such that (2.2) holds.

Theorem 2.3 Let $A, B, C \in \Omega^{m \times m}[\lambda]$. Then the Sylvester matrix equation

$$AX - XB = C (2.15)$$

has a solution $X \in \mathbf{C}_m$ if and only if there exists $Q \in \mathrm{GL}_{2m}(\Omega)$ such that

$$\left[\begin{array}{cc}A&C\\O&B\end{array}\right]=Q^{-1}\left[\begin{array}{cc}A&O\\O&B\end{array}\right]Q,Q^*\left[\begin{array}{cc}-I_m&O\\O&I_m\end{array}\right]Q=\left[\begin{array}{cc}-I_m&O\\O&I_m\end{array}\right].$$

Proof In the proof of Theorem 2.1, let m = n, V = U, S = Q and replace (2.14) by $X = \frac{1}{2}(U_{12} + U_{12}^*)$. Then we can complete the proof by adjusting slightly the rest of the proof of Theorem 2.1.

Theorem 2.4 Let $A, B, C \in \Omega^{m \times m}[\lambda]$. Then the Sylvester matrix equation (2.15) has a solution $X \in \mathbf{S}_m$ if and only if there exists $Q \in \mathrm{GL}_{2m}(\Omega)$ such that

$$\left[egin{array}{cc} A & C \ O & B \end{array}
ight] = Q^{-1} \left[egin{array}{cc} A & O \ O & B \end{array}
ight] Q, Q^*Q = I_{2m}.$$

Proof In the proof of theorem 2.1, let

$$T_c = \{(U, V) | M_0 U = U M_c, U^* M_0 = M_c U^* \}.$$

Then for (2.7),(2.12),(2.13) and (2.14) become respectively the following

$$\begin{cases} AU_{1} - U_{1}A = 0 \\ BU_{21} - U_{21}A = 0 \\ AU_{12} - U_{1}C - U_{12}B = 0 \\ BU_{2} - U_{21}C - U_{2}B = 0 \\ AU_{2}^{*} - U_{2}^{*}A + CU_{21}^{*} = 0 \\ AU_{12}^{*} - U_{12}^{*}B + CU_{1}^{*} = 0 \\ U_{21}^{*}A - BU_{21}^{*} = 0 \\ U_{1}^{*}B - BU_{1}^{*} = 0 \end{cases}$$

$$AU_{12}-U_{12}B=C, \quad A(-U_{12}^*)-(-U_{12}^*B)=C, \quad X=\frac{1}{2}(U_{12}-U_{12}^*).$$

By adjusting slightly the rest of the proof of Theorem 2.1, we can complete the proof. \Box

Theorem 2.5 Let $A_i \in \Omega^{m \times n}$, $B_i \in \Omega^{n \times m}$, $C_i \in \Omega^{m \times m}$, i = 1, 2. Then the matrix equation (1.1) is consistent if and only if there exist $Q \in GL_{n+m}(\Omega)$ such that

$$Q^* \left[\left(\begin{array}{cc} -A_1 & O \\ O & B_1 \end{array} \right) - \lambda \left(\begin{array}{cc} -A_2 & O \\ O & B_2 \end{array} \right) \right] Q = \left(\begin{array}{cc} -A_1 & -C_1 \\ O & B_1 \end{array} \right) - \lambda \left(\begin{array}{cc} -A_2 & -C_2 \\ O & B_2 \end{array} \right).$$

Proof The system (1.1) is equivalent to the following

$$(A_1 - \lambda A_2)X^* - X(B_1 - \lambda B_2) = C_1 - \lambda C_2.$$

By Theorem 2.1, we can complete immediately the proof. \Box

Now we consider the system (1.2) where $A_i, C_i \in \Omega^{m \times m}, B_i, D_i \in \Omega^{n \times n}, E_i \in \Omega^{m \times n}$, and (A_i, C_i, B_i, D_i) is a regular matrix quadruple, i = 1, 2. There exists $\lambda_i \in F$ such that $C_i + \lambda_i A_i$ and $B_i + \lambda_i D_i$ are invertible, i = 1, 2. Let

$$\widetilde{A_i} = (C_i + \lambda_i A_i)^{-1} A_i, \widetilde{D_i} = D_i (B_i + \lambda_i D_i)^{-1}, \widetilde{E_i} = (C_i + \lambda_i A_i)^{-1} E_i (B_i + \lambda_i D_i)^{-1}.$$
 (2.16)

It is clear that the system (1.2) is equivalent to the following

$$(\widetilde{A_1} - \lambda \widetilde{A_2})X - (\widetilde{D_1} - \lambda \widetilde{D_2}) = \widetilde{E_1} - \lambda \widetilde{E_2}.$$

Hence by Theorem 2.3 and Theorem 2.4 we have respectively the following theorems.

Theorem 2.6 Let $A_i, C_i, B_i, D_i, E_i \in \Omega^{n \times n}$, and (A_i, C_i, B_i, D_i) be a regular matrix quadruple, and $\widetilde{A_i}, \widetilde{D_i}, \widetilde{E_i}$ be defined as (2.16) i = 1, 2. Then the system (1.2) has a solution $X \in \mathbb{C}_n$ if and only if there exists $Q \in \mathrm{GL}_{2n}(\Omega)$ such that

$$Q^* \begin{bmatrix} -I_n & O \\ O & I_n \end{bmatrix} Q = \begin{bmatrix} -I_n & O \\ O & I_n \end{bmatrix},$$

$$\begin{bmatrix} \widetilde{A_1} & \widetilde{E_1} \\ O & \widetilde{D_1} \end{bmatrix} - \lambda \begin{bmatrix} \widetilde{A_2} & \widetilde{E_2} \\ O & \widetilde{D_2} \end{bmatrix} = Q^{-1} \begin{bmatrix} \begin{pmatrix} \widetilde{A_1} & O \\ O & \widetilde{D_1} \end{pmatrix} - \lambda \begin{pmatrix} \widetilde{A_2} & O \\ O & \widetilde{D_2} \end{pmatrix} \end{bmatrix} Q.$$

$$- 19 -$$

Theorem 2.7 Let $A_i, C_i, B_i, D_i, E_i \in \Omega^{n \times n}$, and (A_i, C_i, B_i, D_i) be a regular matrix quadruple, and $\widetilde{A_i}, \widetilde{D_i}, \widetilde{E_i}$ be defined as (2.16), i = 1, 2. Then the system (1.2) has a solution $X \in \mathbf{S}_n$ if and only if there exists $Q \in \mathrm{GL}_{2n}(\Omega)$ such that

$$\left[\begin{array}{cc} \widetilde{A_1} & \widetilde{E_1} \\ O & \widetilde{D_1} \end{array}\right] - \lambda \left[\begin{array}{cc} \widetilde{A_2} & \widetilde{E_2} \\ O & \widetilde{D_2} \end{array}\right] = Q^{-1} \left[\left(\begin{array}{cc} \widetilde{A_1} & O \\ O & \widetilde{D_1} \end{array}\right) - \lambda \left(\begin{array}{cc} \widetilde{A_2} & O \\ O & \widetilde{D_2} \end{array}\right)\right] Q, Q^*Q = I_{2n}.$$

References:

- [1] DREXL P K. Skew Field [M]. London Math. Soc. Lecture Note, Ser. 81, Cambridge, 1983.
- [2] ROTH W E. The equation AX YB = C and AX XB = C in matrices [J]. Proc. Amer. Math. Soc., 1952, 3: 392-396.
- [3] EPTON M A. Methods for the solution of and its application in the numerical solution of implicit ordinary differential equations [J]. BIT, 1980, 20: 341-345.
- [4] WIMMER H K. Roth's theorems for matrix equations with symmetry constrains [J]. Linear Algebra Appl., 1994, 199: 357-362.
- [5] WIMMER H.K. Consistency of a pair of generalized Sylvester equations [J]. IEEE Transactions on Automatic Control, 1994, 39: 1014-101.
- [6] WANG Qing-wen, SUN Jian-hua, LI Shang-zhi. Consistency for bi(skew)symmetric solutions to systems of generalized Sylvester equations over a finite central algebra [J]. Linear Algebra Appl., 2002, 353: 169-182.
- [7] WANG Qing-wen. On the center(skew)selfconjugate solutions to the systems of matrix equations over a finite dimensional central algebra [J]. Mathematical Sciences Research Hot-Line, 2001, 5(12): 11-17.
- [8] WANG Qing-wen. Matrix equations $AX^* XB = C$ and $AX \pm XB = \mp C$ over skew fields [J]. Advances in Math., 1996, 6: 532-539.
- [9] WANG Qing-wen, YANG Chang-lan. Generalization of Roth's theorem [J]. J. Math. Res. Exposition, 1996, 1: 35-40.
- [10] HUANG Li-ping. The matrix equation AXB GXD = E over the quaternion field [J]. Linear Algebra Appl., 1996, 234: 197-208.

中心代数上的矩阵方程组

王卿文, 李尚志

(中国科学技术大学数学系,安徽 合肥 230026)

摘 要: 设 Ω 是一个特征非 2 的具有对合反自同构的有限维中心代数. 本文研究 Ω 上的两个矩阵方程组,分别给出了其有一般解和次 (斜) 自共轭解的充要条件.