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Abstract: Calculation of a variation of discrete Fourier transform, Chrestenson spectra
of functions of n indeterminates over integer modulo m (composite integer), is con-
sidered. Based on sparse matrix decomposition, two fast algorithms with complexity
O(m"n Y ;_, pi) are given to calculate the Chrestenson spectra, where pyp; - - pr is the
prime factor decomposition of m.
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1. Introduction

Discrete Fourier transform (DFT) is applied in many fields such as communication,
geophysical signal processing and computer tomography(!l. The fast Fourier transform
(FFT), fast algorithms on DFT, is widely researched®?. In cryptology, a variation of
DFT, Walsh transform, is an important tool to study properties of cryptological functions
over the binary field!!). Recently, functions over Z /(m), the integer modulo m (composite
integer) residue class ring, are applied to the fields of cryptology, designs of circuits and
digital communication!®). The corresponding tool for functions over Z/(m) is Chrestenson
spectrum, a concept which can be traced back to [6], but fast computation for it has
not been well developed. Based on sparse matrix decomposition, a fast algorithm with
complexity O(m™nm) is given in [5] to calculate Chrestenson spectra of functions over
Z/(m) of n indeterminates. In this paper, we further develop the idea of [5], and by
more sparse matrix decomposition, a faster algorithm with complexity O(m™n 3 I_, p;) is
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deduced, where p;p; - - - p, is the prime factor decomposition of m. This algorithm is a
generalization of that in [2] for the case of n = 1. When m is a power of prime, we develop
another sparse matrix decomposition with simple and direct form, which induces another
fast algorithm.

2. Chrestenson spectra

Let R = Z/(m) be the integer module m residue class ring, all elements of R are

naturally regarded as integers in [0, m — 1]. Let f(z1,---,2,) be a function over R of n
indeterminates, the Chrestenson spectrum at w = (w1, -, w,) € R" of f is defined as
Sip(w) = Y- gflHe, (1)
zER"

where £, = exp(-zﬂ,?) and w2 = w1z + - + wpk,. The set § = {S5(w)|w e R"}
is called the Chrestenson spectra of f.

Obviously, the complexity to calculate directly S according to (1) is O(m?"). To accel-
erate the calculation of S, we define the Chrestenson transform matrix M,, for functions
of n indeterminates as the matrix of order m"™

M, = (Er—nA‘B)A,BER"a (2)

where the row label A and the column label B are arranged in the ascending order of the
m-adic integers corresponding to A and B, here an n-tuple A= (ap_1, - +,01,a0) € R™ is
naturally corresponding to the m-adic integer 377 a;m’. Write S and the value set of f

as column vectors § = (S(4)(w))wern and F = (.f,fn(m))xeRn, where the column labels of §

and F are arranged in the same order as above A. Then
S=M,:F (3)

Let G = (gi;) and H be respectively u x v and u’ x v’ matrices, the tensor product
G ® H of G and H is the uu' x vv' matrix[®

gufl - g1 H
guH - guwH
Foreachi=1,.-.,n, put
D;i=IMg..egIMegMeI™eg...¢IM),

where M is in the i-th position of the tensor product and I (m) denotes the identity matrix
of order m. Thenl®!

Mn:M1®M1®"'®M1=DnDn—l"'D1a (4)

and
S = Dp(Dn-a(--(D2(D1F)) -+ ))- (5)
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Note that any nonzero entries of D; is of form £, and since that £ = 1, the matrix
multiplication in (5) only involves additions of polynomials of {,, of degree at most m — 1.
(Multiplying a polynomial of £, by a monomial of £, is only a cyclic shift of m-tuple
when polynomials of £, of degree at most m — 1 are represented as m-tuples.) So, the
complexity of the calculation of S can be measured by the total number of the nonzero
entries in the D;’s. Since D; is a sparse matrix with m nonzero entries in each row, it is
easy to see that the calculation complexity according to (5) is O(m"*n).

Remark 1 The calculation of DFT of general complex functions usually involves error
of some extent (so-called computational noise) since inaccurate real approximation to
complex values and limited computation precision!!l. This phenomenon does not exist
in the calculation of Chrestenson spectra since only operations of algebraic integers are
required.

3. Sparse matrix decomposition and improved fast algorithm

We further accelerate the calculation of S by decomposing M; into a product of sparse
matrices.

Let m = p1ps---p, be the prime factor decomposition of m, where » > 1 and some
pairs of the p;’s may be the same. We introduce two mixed-adic representation of integers
in [0,m — 1], each of which represents each integer ¢ in [0,m — 1] as a unique r-tuple
(fr—1,- - ,%1,1%0) satisfying

0< 21 <pr,~,0<3 <p3,0 <50 < 1 (6)

Representation 1 Dividing ¢ and the remainder in the preceding division step in turn
by pip2- - pPr-1, PAP2 - - Pr—2, ***, P1P2, P1, We have

L=P1P2 - Proi1le1 T PAP2 Pro2ie_2 + -+ + p1p2i2 + priy + to.
The resulting r-tuple (¢,_1,---,%1,%) is denoted by repy(z) = (¢r-1,- -, %1,%).

Representation 2 Dividing ¢ and the quotient in the preceding division step in turn by
Pry Pr-1, * -, P2, W€ have

t =141 4 pr(fr—2 + Pro1(fr-3 + Proa(- - - + p3(i1 + pato) -+ -)))-
This r-tuple (4,_1,---,41,10) is denoted by rep,(z) = (4,1, - -,%1,0)-

Clearly, if Pr = p2 = " =pPpr=p and m = Prs then repl(i) - (jr—lv"'ajl’jO)
is the usual p-adic representation of i while repy(i) is the inverse code of this p-adic
representation, i.e., reps(2) = (jo, 41, -+, Jr—1). Set

F,‘:{O,l,'--,pi—l}, i:1,2,"',’l‘,
I‘:I‘,x~--><I‘2><I‘1,

define o be the lexicographical order over I' with prior of more right components, i.e., the
lexicographical order satisfying

(1,0,---,0) <5 (0,1,0,---,0) <4 - - <o (0,---,0,1).
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It is easy to see that the integer domain [0, m — 1] is one-to-one corresponding to I' under
each of the above two representations, and under Representation 2 the usual ascending
order over [0,m — 1] is corresponding to the ascending order over I' under o.

Now we redefine the Chrestenson transform matrices and the spectra as

My = (s¥)ocijems Ma = (s2B)aBer, §=(S(5)(9))icrn, (7)

where ¢, = £! = exp(%ﬂ), the column labels j and B are respectively arranged in
the usual ascending order of integers and corresponding m-adic integers, the row label i
is arranged such that rep;(z) is ascending under o, and the row label A is arranged in the
following ascending order: let A = (ap_1,---,a1,a0) € R*, A' = (a},_4,---,a},a)) € R",

A # A') Ais called smaller than A’ if

— ! — ! _ I /
a; = Q1,02 = Ay, ,0, = aurepl(a-ﬂ-l) <o repl(aa+1)

for some integer s in [0,n — 1]. The M; and M,, in (7) are respectively images of the
original M, and M,, in (2) under some matrix row permutations. Formula (3) and the
formula M,, = M; ® --- ® M; also hold for the new M; and M,,.
Let rep1 (i) = (ér—1,--",%1,%), rep2(j) = (Jr-1,""",J1,70)- Set ¢ = p1p2---pr-1, P =
P, m = pq, and write
1= 2'1'---1q + i’aj = jr—l + jlp’ (8)
.where 0 < 7,5 < q,0 < 4_1,jr—1 < p, and repy(¢') = (0,%,_3, -+ ,%1,%0). Then

. . o o
1] _ tp— - 1 -1 .1
cnjz“cn: 17r—1q+1gr lqu'

Divide evenly M, into ¢ submatrices of order p, for each submatrix all of its entries ¢
correspond to the same i’ and the same j’ according to (8) while ¢,_; and j,_, vary in
[0,p — 1] in the ascending order. For each ¢’ € [0, ¢ — 1], define a matrix of order p

T.(¢) = (C&klﬁll)ogk,kw (9)

Then the block form of M; is (g;'j'T,(i’))og,-/‘j,q. Define a diagonal block matrix @, and
a matrix M’ of order ¢ as

[

Qr = diag(Tr(i’))OSi’@’ M = (C;J )OSi’»J"<qv (10)
where i’ and j' are arranged in similar order as ¢ and j in (7). Since
GIT,() = T - (5919,
one has
My = Q.- (M' 8 I¥) (11)

It is clear that M’ is a matrix of order ¢ and with similar structure as My, and therefore
we can further decompose M’ into a form similar as the right side of (11) provided r—1 > 1.
Rewrite (7),(9),(10) for s = 2,3,---,7 as

M(pIPZ e 'pgl) = (C;J{Pz"'lh )OSi,j<p1p2---p.a
T,(i) = (Cgllgf-tﬁ:_lkl“ I)Osk,kp.a for 0 <4/ < p1p2- - Ps-1, (12)
Q, = dia.g(Ta(i/))0S5'<P1P2"-p.-—1‘



Similarly as in (11) one deduces that

M(p1pz--Ps) =Q, - (M(p1p2 -+ - Paci) ® IP))
=Q,(Qse1 @ IP))(Q,_y @ IPe-1P2)) .. (Qy @ IP2P2P2)).  (13)

Put
Hr = Qrv Ha = Qa ®I(p.+1p.+2~--pr)’ 3= 1127" BT 1,

Dt.g:I(’")®-~-®I('")®H_,®I(m)®---®I(’"), 1<t<nl1<s<r, (14)

where H, is in the ¢-th position of the tensor product of the n matrices. Then H, and Dy,
are sparse matrices with p, nonzero entries in each row, and there exist totally m"n Y} _, p,
nonzero entries in Dy, (1 <t < n,1 < s <r). From (13),(14),(4) and (3), one deduces

My = M(pip2---p) = H-Ho—y -~ Hy,
Mn, = Dnan,'r—l v Dnan—l,r Cee Dﬂ‘l,l . Dl'l‘Dl,r—l e Dll,
S = Dnr(Dn,r—-l(- .. (Dnl(- .. (DIZ(DnT)) - )) e )) (15)

We summarize the above as

Theorem 1 Let m = p1p, ---p, be the prime factor decomposition of m. Then
(i) The Chrestenson transform matrix for functions over Z/(m) of n indeterminates
is a product of nr sparse matrices;

,
(ii) The complexity to compute the Chrestenson spectra according to (15) is O(m™n Y p;)
i=1

Remark 2 A fast algorithm of complexity O(m Y I_; p;) is given in [2] to calculate
{0 16w | 0 < w < m — 1}, the DFT of complex vector v = (vp, - ,vm—1) of length
m. This is an analogy of Chrestenson spectra of functions of one indeterminate. Our
algorithm can be regarded as a generalization of this algorithm.

In some applications, for example in cryptology[4], functions over Z/(p"), especially
over Z/(2"), play an important role. For this kind of rings, below we show that M; and
M, can be decomposed into products of sparse matrices in a simple and direct way, such
that all the sparse matrices of M; have nonzero entries in the same positions.

Letm=p",r>1T={0,1,---,p"—1}. For s = 1,2,-- - r, define maps ¢, : I xI' —» Z
and § : ' x I’ — {0,1} as

6s(4,7) = jroa(iop” "  Hi1p"E - 4 im1p™ %),
6(i,7) =1 1if (jo, 41,72, > Jr—2) = (%1,%2,%3,"*,%r—1), and 0 otherwise,

where i,j € T, repi(i) = (¢_1,"-,%1,%), and rep1(j) = (Jr-1,***,J1,J0). Define the
matrix
H, = (6G,7)s2MN)oc; jem for s =1,2,---,7, (16)

where the row label 7 and the column label j are arranged in the usual ascending order of
integers. Similarly as in (14) we define

Déa:I(m)®"'®I(m)®H;®I(m)®"'®I(m),1StSn,lSsST. (17)
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Theorem 2 Let m = p",r > 1, and M,, be as in (7). Then
My =H'H_,---H,, (18)
and the complexity to compute the Chrestenson spectra according to
§ = Dpe(Dyy o1 (- (Dpa (- (D15(D1:T)) - 4)) -+ ) (19)
is O(m"nrp).

Proof Suppose z’] € Pa reI)l(":) = (ir—lv"'yilviO)a repl(j) = (jr—l:"'ajl’jﬁ)’ and

suppose a,,Qr-1, -+ *,a2 € ', a, 41 =1,0; = 5. If
6(ar+1aar) = 6((1,-,(1,-__1) == 6(0'2,0'1) =1,
then for s = 2,3,---,r, the first component of rep;(a,) is equal to the second component

of rep;(a,—1) and is equal to the third component of rep1(a,—2), and so on. So, it is equal
to the s-th component j,._, of rep;(a1) =rep1(j), and hence,

repl(af) :(jowir-1’ e 7i2’i1)a

repl(af—l) :(jl’jﬂair—la T 7i37i2)1

repl(az) :(jr—'21 jr-—31 T ,j(),‘l:,-_l),
therefore, a,,a,_1,- -, as are uniquely determined by 7 and j. From the definitions of H,

the (i,7)-entry of H/H]_, --- H} is <5, where ¢ = }_7_; ¢s(@,+1,4a,). Since

repy(@s41) =(Jros—1,"" 131,50, tr=1,%r=2, ", tr—s),
1ep1(@s) =(Jross 151,50, br—1, 802, * , br—at1),
Go(@s11,85) =dr—albr_ sl H 4+ +dp2p” " 4 _1p7°)
=jrap” (0P T 4+ g1’ + r—ep® T+ 4 dp_ap + dp_1)( mod P7),

set
1= dop" 4 1P’ i T P e,

i.e., i=rep] !(rep2(i)), then

€

r -
€ =1 'er—spr—a =1 Jy Sn = S
8==1

But c,‘:;j is the entry of M; with row label ; and column label j, so this entry is exact the
(,7)-entry of M; in the ordinary row and column labels, and Formula (18) is proved. The
last statement of the theorem is clear as in Theorem 1.
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