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Abstract: In this paper we study the C® compactness for minimal submanifolds in
the unit sphere. We obtain two compactuess theorems. As an application, we prove
that there is a positive number é (n), such that if the square of the length of the second
fundamental form of a minimal submanifold in the unit sphere is less than 2n + 8(n), it
must be totally geodesic or diffeomorphic to a Veronese surface.
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1. Introduction

The compactness theorem give us good understanding of the behavior of Rieman-
nian manifolds under certain restricts of curvature, volume and diameter, see for example
[2,6,7,11,8]. In [12], Shen obtained a C''**convergence theorem for Riemannian submani-
folds. However, C1** convergence is not enough for many applications. In this paper, we
will study C*convergence for minimal submanifolds which are isometrically immersed or
imbedded in the unit sphere. We should mention that Choi and Schoen! have obtained
the C°°compactness theorem for minimal surfaces in three dimensional manifolds.

Suppose M"is a minimal n-dimensional submanifold of the (n + p)-dimensional unit
sphere S™*P. First let’s fix some notations. We denoted by V (M), d(M), s(M), Ric(M)
and K(M)the volume, diameter, square of the length of the second fundamental form,
Ricci curvature, and sectional curvature of M"respectively. Let I',4, = {M"|M"is
a minimal closed Riemannian submanifold immersed in S™*?}. Here, we don’t distin-
guish isometric manifolds. Given a sequence of Riemannian manifolds {M}$2,, we say
{M}}C> converges to a Riemannian manifold M™", if for all but finitely many i, there
exist diffeomorphisms f; : M™ — MPsuch that {fg;}C* converges to g for every k, where
g: and gare the Riemannian metrics of M and M respectively. Now we can express our
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theorems as follows:

Theorem 1 Let Iy, = {M" € 'yyy |[M™ be imedded in S™*',s(M) < s}. ThenT?%,,
contains only finitely many diffeomorphism types of n-manifolds. Moreover, I';,, is C*
compact.

One may hope to prove that {M™ € I',,;1 [s(M) < s} is C*™ compact. However, this
is not ture, because s(M) can not control V(M) if M™ is only immersed. For higher
codimensional case, we have

Theorem 2 Let I‘Xf_p = {M" € Tnyp|V(M) < V,s(M) < s}. Then I‘Z‘;p contains only

finitely many diffeomorphism types of n-manifolds. Moreover, I‘Z’jp is C* compact.
As an interesting application of the above theorem, we have the following pinching
theorem, which improves the previous pinching constant is [3,5,14].

Theorem 3 For every n > 2, there is a positive number §(n), such that if s(M) <
%n-{— 6(n), M™ € I'nyp, then M™ must be totally geodesic or diffeomorphic to the Veronese
surface.

2. Some necessary estimates

To prove the above theorems, we need to estimate the bounds of curvature, volume
and diameter of a minimal submanifold. Some facts are well known.

Lemma 1 If M" € Ty4p, then V(M) > V(S™). Where V(S") is the volume of the
standard n-dimensional sphere.

Proof This follows from [9).

Lemma 2 If M™ € T, ,, then V(M) < C(s), where C(s) is a constant depend only on
s.

Proof This follows from [10].
To estimate curvature and their derivatives, we shall introduce the structure equations

of submanifold. Suppose M™ € T'ny,,. Choose local orthonormal frame {e;, ez, -, €np}for
S§7+P_ such that when restricted to M™ {e1, e, - -,e,}is tangent to M™.The dual 1—forms
are denoted by {w1,ws," - ,wn4p}. We have the structure equations for S™*?as follows:
n+p
d“"A == Z waB /\UB,A € {1v29' N +P}:WAB = —WpBA,
B=1

ntp
de‘B = _ZwACAwCB +QABa AvB € {1’21"°1n+p}1

=1

1 n+
where Q4p = ; Yz p=; RaBcpwe Awp, Rapcp = 64céBD — $4D8B0C-
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When restricted to M™, the above equations turn out to be

n
dw; = —Zw;j Aw;j,i € {1,2,--- ,n},w,-,- = —wji,
J=1

dwi; = — Zwik A wij + Qj5,4,7 € {1,2,---,n},

Q=

N =

a

where h:-’j satisfies

n
— (e . a a
Wai = Z hijwjahij = hj.w
=1

n+p

dwop = — Z Way A wyg + Rag,

y=n+1

1 a
Qop = 2 > Kaprawi A wi, Kapet = Rapia + Z(hﬁchﬁ - h;zhfk)-

ki

The second fundamental form of M" is

H:Zhﬁ}w;@w,-@ea.

atj
Then s(M), the square of the length of H, is equal to 3, (h)%.

Lemma 3 For M™ € T',,;,, we have

|K(M)| <1+ 2s(M), Ric(M) > (n—1)[1 - s(M)/n].

k=1

n

Z Kijriwi A wi, Kijii = R = E(h?k S — RahSk),
k=1

(1)

Proof The first estimate follows from (1). Next we will verify the second estimate at
every fixed point z € M™. Denoted by H%the n x n matrix whose (4,j) entry is AJ;.
Set G = 3 (H*)?. By choosing suitable frame {e;, ez, --,e,} we can assume that G is

diagonal at z. Thus by the minimality of M™ and (1), we have

ZK,'jkj = (n - 1)5{ — Gi.
J
Also, we have

n(hg)? = (n - () + (- T b
J#i

<(n=1)(RE) + (-1 3 (A = (n - 1) D (AF)".

i#i
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Then by (2) and (3) , we know that 3, K;j; = 0 for i # k, and
ZKW— n—l)—Z(h‘I‘) (n-1) Z[ 243 (h)7

J#i
(n-1) Z Z(h =(n—-1)[1- s(M)/n].

Lemma 4 If M" ¢ I‘,‘:jp, then d(n,p,s) < d(M) < D(n,p,s,V).

Proof The lower bound follows from Lemma 1,3 and the Bishop-Gromov volume com-
parison theorem. The upper bound follows from Lemma 3 and a simple packing argument.

Lemma 5 If M" ¢ TY*  then

n+p1

'DkRm\ < Ci(n,p,s,V), k> 1.

Where Rm is the curvature tensor of M™, D* Rm is the k-th covariant derivative of Rm,
| - | is the pointwise norm, Cr(n,p,s,V) = C} is a constant depend only on n,p,s and V.

To prove this lemma, we only need to estimate |D,, H|, the pointwise norm of m-th
covariant derivative of the second fundamental form. We put

m _— a y > CEEANY .‘
D™H = Z Ris iy Wi @ Wiy - @ Wi, @ eq,

atjiztmya

'Dmle = Z (h“t]ln lm+2)2'

atpizig 42
We have the following Ricci identity
h?l 1‘lkl 7'1 sk — Z Z h‘ll 1] 11‘IJ+1 N Tl,kl + E h;ﬂlgaRﬂaLl' (4)
T g=1 : B

The computation of [3] gives

Z h;_)kk = Z hnL,Rnth + Z Rnk_]k + Z h,kRﬁa]k (5)

nk Bk

More generally, we have

a [¢ 4
Eh‘l’q ‘imkk — Z (hiliZ"’irn—l‘itrzk A RS RIE Sy TP )L+

k
E (h?l‘lgkt,,.k 1112 ,\,klm Eh‘lliz 1". |Lk ’-m’m Z 3' (6)
k
Now we have
1 2 2
'iVleHl = - ‘D'm+1H‘ — Z h‘l(»xln 1,,,+22h?11'2"-im+2kk' (7)
ty12 tm 42 k
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Where Vis the Laplacian —trD?.

Proof of Lemma 5 By definition, ]DOHI2 = s(M) < s. Integrate (7) on M™, using
Stokes’ formula and (6), we get [ |[DH|* < d;.
Now suppose
‘DkH‘ <Crk=01,2-,m—-1m>1.

/Mn ID"H? < dy.

From (4), (5), (6), and (7), we have
2
%v ID™H|* < — )D”‘“H} +a|D™H? + b|D™H]|.

Integrating gives
m+1 2
M" ‘D H‘ S dm+1-

Now, from (8}, we can deduce

D™ H| VD™ H| <|d|D™H|* - |D"* B + a|D"H + b|D™ H|
<a|D™H|* +b|D™H|. (8)
We have applied Kato's inequality |d|D™H||? < ID'"+1H|2. Rewrite (9) as
V(| D™H| + b/a) < a(|D™H| + b/a).

Then by Theorem 3 of Appendix five of [1], we get the estimate |[D™H| + b/a < Cy,.
We should mention that Lemma 3, Lemma 4, Theorem 2 of Appendix one of [1], and
Theorem 3 of Appendix four of [1] provide the condition needed by the theorem we used.

By induction we get the estimate lD’”’H‘ < Cifor all k > 0. Now by the structure

equations, we also get the estimate of ’DkRm‘, which finishes the proof.

3. Proofs of the theorems

We are now in a position to prove Theorem 1, 2, and 3.

Proof of Theorem 1 and 2 First let’s consider I‘Z’jp.
the C* version of the Cheeger-Gromov compactness theorem (cf. [6,8,11]), we know

that F,‘:’:pconsists of only finitely many diffeomorphism types of n-manifolds. Moreover,
given a sequence of {M*} which belong to I‘X’:In we can choose a subsequence which
C™ converges to a n-manifold M™. Without loss of generality, we can assume that
{M[} itself C*converges to M™. Thus for i sufficiently large, there are diffeomorphisms
fi : M™ — MP, such that f7g;C* converges to a Riemannian metric g on M™. Where
gi = ¢7(ds?) is induced by the isometric immersion ¢; : M®* — §"+P C R"tP+1 ds? is the
standard metric on R"*?+1. We shall prove that M™ ¢ I‘,‘L/’:p which will finish the proof
of Theorem 2.

By lemma 1, 4 and 5 and
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By Takahashi’s theorem [13], V;¢; = ng;. Then by similar calculations of Lemma 5,
we can find constants Cj which independ of 7, such that ‘D};W < Ck. Thus

| Dfeaioifs)
Now since {fg:}C converges to g, for ¢ sufficiently large, we have
’D;’; (pifi)

Then by Arzela-Ascoli’s theorem, there is subsequence of {¢;f;} which C* converges to
a C®map ¢ : M™ — R™P+1, It’s apparent that ¢*(ds?) = g,V ¢ = np. Thus again by
Takahashi’s theorem [13], ¢ is a minimal isometric immersion which maps M™into S"*7,
Now it’s easy to see that M" ¢ I‘Z’J‘:p.

Next let’s consider I';,,. By Lemma 2 and the above proof, we know that T;
consists of finitely many diffeomorphism type of n-manifolds. Moreover, given a sequence
of {M} € T}, we can find a subseqence C* converges to M™ which is minimally
immersed in §"*!. We want to prove that M™ € I'2 ;. We will assume that it’s { M} itself
that C*°convergest to M™. By the above proof, we assume that there are diffeomorphisms
fi : M™ —» M!and isometric imbeddings ¢; : M®* — S"*! C R™+2. It’s only need to prove
that ¢ is an imbedding.

Suppose on the contrary, ¢ is not imbedded. Then there are different points z,y € M"
such that ¢(z) = ¢(y) = p € S™*1. Since pis an immersion, there are geodesic balls
B,(€), By(€) such that ¢|B,(2¢) and ¢| By(2¢) are imbeddings, B;(2¢) N By(2¢) = .
Note that these balls are selected with respect to the metric ¢*gp, where go is the standard
metric on S™*1. Now there is a positive real number § such that

distg, (p(0Ba(€)),p) > 6, disty, (p(8By(e)), p) > 6.

Where distg, is the distance function on S™*!. Since {y;f;}C> converges to ¢, for suffi-
ciently large ¢, we have

= ,DJIJC.“P‘

< Ck.

< 2C%.

N O

. 5 ..
distg, (i fi(0B(€)),p) > 3, distg, (0i fi(9By(€)),p) >
Put z; = ¢ fi(z),y: = @i fi(y). Then lim;_, o, &; = lim;_, o ¥; = p. So for sufficienctly large
i, we have

§ arccot\/s
10’ 4

. . & arccoty/s
), distgy(¥i,p) < min(-— arccoty/s .

disty, (2;,p) < min( 0’ 1

Now for every i, choose z; € ¢; fi(B,(¢)), such that
distg, (2i, i fi( By (€)) = distg, (2, z).
Then the following inequalities hold for ¢ sufficiently large
distg, (p, ) < distg, (p, yi) + disty, (ys, ;) + disty, (2, 2:)

: . . : 6
< distgy (p, yi) + 2disty, (yi, 2i) < 3distg, (p, yi) + 2distg, (p,2:) < 2
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This implies that z; € @, f;(B,(¢)). Choose a minimal geodesic y; in §™*! which con-
nects z; and z;. Then by the formula for the first variation of arclength, we know
that 4;(0) € N(gifi(M™)), where N(¢;f;(M™)) is the normal bundle of ¢;fi{(M™). Set
l; = disty, (2, 2;). Then

exp(1:75(0)) = exp,(0),

where expl is the normal exponential map of ¢;f;(M"™). Now l; < disty, (yi,2z:) <
Jarccot\/s, which implies that exp’ is not injective on {v € N(p;fi (M™))| |vll,, <
arccot./s}. But this contradicts with Lemma 3 of [10], so our proof is completed. O

Finally, we prove Theorem 3, which gives an application of the above results.

Proof of Theorem 3 Recall the theorems in [5] that, given M™ € Tpnyp, if (M) < 2n,
then M™ must be totally geodesic or is the Veronese surface (in which case n = 2,s =
4/3). Suppose on the contrary the conclusion of Theorem 3 is not ture. Then there is
M € Tpypsuch that s(M;) < %n + &;,lim;_, o £; = 0, M['is neither totally geodesic nor
diffeomorphic to the Veronese surface. We can assume that 0 < ¢; < {5. By lemma 3 we

know that Ric(M) > i(n — 1). By the Bishop-Gromov volume comparison theorem, we

4
have V(M;) < V(5™(2)), where S™(2) is the sphere in R™*! with radius 2. So M € I‘X’:p.

Where V = V(5"(2)),S = 2n. Applying Theorem 2 we get a M™ € I’X;"p, such that a
subsequence of {M}C* converges to M™. Now it’s easy to see that s(M) < Zn. By the
definition of C*convergence and the above assumption, M™ is not the Veronese surface.
So by the pinching theorem mentioned at the beginning, M ™must be totally geodesic. So
s(M) = 0. But this implies that for isufficiently large, s(M;) < %n, which yields that M;is
totally geodesic. This is a contradiction. O
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