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1. Introducation

Let R™ denote the n-dimensional Euclidean space with any convenient norm || - ||,
and (,) the scalar product. R; = [0,0),R = (~00,00),R} = {u € R" : w; > 0,i =
1,2,:---,n}.PC[R, X R™, R"] denotes the space of piecewise continuous functions mapping
Ry x R™ into R™.

Definition 1 A proper subset G of R" is called a cone, if
(i) A\GC G,A>0;

(i) G+G CG;
(iii) G = G;
(iv) G°=¢;

(v)_Gn{-G}={0},
where G and G° denote the closure and interior of G respectively, and 0G denotes the

boundary of G.
The order relation on R™ induced by the cone G is defined as follows:
Let z,y € G,thenz <gyiffy—zc Gandz < y iff y — z € G.

Definition 2 The set G* is called the adjoint cone if G* = {¢ € R" : (p,z) > 0,z € G}
satisfies properties (i)-(v) of Definition 1.
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z € 8G iff (p,z) = 0 for some p € G}, Go = G — {0}.

Definition 3 A function g : D — R™(D C R") is said to be quasimonotone relative
to the cone G, if z,y € D and y — € 3G implies that there exists @p € G} such that
(vo,y —2) = 0, and (po,9(y) - g(z)) > 0.

Consider the impulsive differential system

%%:f(t,z), t#tk’
Az = Ii(z(tr)), t=te,k=1,2,--, (1)
:c(ta") = 2q.

Where f € PC[R; x R™ R™),I; € C[R™ R™). Define S, by 5, = {z € B™ : ||z|| <
p,p > 0}.Let G C R™ be a cone in R*,n < m, and V € PC[R4 x S,,G|. For (t,z) €
Ry x 8,,h > 0, define the function DtV (t,z) by

D¥V(t,2) = lim sup(3)[V(t+ bz +hf(t2)) - V(5,2

Consider the comparison differential system

(;—'f:: (t,u), t#tk,
Au = Bi(u(tr)), t=te,k=1,2,---, (2)
u(ta') = UQ.

Where g € PC[Ry x G,R"], By € C{G,R"], and G is a cone in R". Let S(p) = {u e G:
lull < p,p > 0}, w € PC[R4+ x S(p),G). And for (t,u) € Ry x S(p),h > 0, define the
function DY w(t,z) by

DY w(t,u) = hli%1+ sup(ill-)[w(t + h,u + hg(t,u)) — w(t,u)).

Definition 4 The trivial solution = 0 of (1) is equistable, if for each € > 0,t, € R4,
there exists a positive function § = §(to,¢), which is continuous in to for each €, such that
the inequality ||zo|| < 8 implies ||z(t;to,20)|| < €,t > to.

Other stability notions can be similarly defined (see [2]).

Definition 5 The trivial solution u = 0 of (2) is ypg-equistable, if given ¢ > 0, there
exists § = §(to,€) continuous in ty for each €, such that the inequality (¢o,ug) < 6 implies
(¢o,7(t)) < €,t > to,where g € Gf,.

Note In definition 5,and for the rest of this paper, r(t) denotes the maximal solution of
(2) relative to the cone G C R™.
Other pp-stability concepts can be similarly defined.

Definition 6 A function a(-) is said to belong to the class K, ifa € C[(0,p), R;],a(0) =0
and a(r) is strictly increasing in r.

Definition 7 (a) A function w(t,u) is said to be positive definite relative to the cone G
(or yo-positive definite)if there exists a € K, such that

al(po,m(t))] < (o, w(t,u)), po € Gy.
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(b) A function w(t,w) is said to be decrescent relative to the cone G (or po-decrescent )if
there exists b € K, py € G, such that

(o, w(t, u)) < bl(wo, 7(2))]-

2. Main results
Theorem 1 Assume that

(i) w € PC[R4+ x S(p),G},w(t,0) = 0,w(¢,u) is locally Lipschitzian in u relative to
G, and for each (t,u) € Ry x S(p), DV w(t,u) < 0;

(ii) g € PC[Ry x G,R"],¢4(t,0) = 0;

(iii) For some ¢ € G§ and (t,u) € Ry x S(p),

al(po,7(t)] < (po, w(t,u)),a € K;

(iv) (po,w(t; + 0,u + B;(u))) < (o, w(ts,u)), Bi(0) =0, =1,2,---,
then the trivial solution u = 0 of (2) is pg-equistable.

Proof Since w(t,0) = 0 and w(t,uo) is continuous in £y, then given a;(e) > 0,tp € R,
there exists 8y, such that |Jug|| < 6;,implies |Jw(t], uo)|| < a1(€),a1 € K.
Now for some @y € G§, [leol] - I[uoll < {l¢ollé1 implies [leoll - [[w(td, uo)ll < {l#ollai(e).
Thus

(o, uo)| < lloll - luoll < [lpollé1,
implies
(o, w(tg , o))l < llpoll - lw(t)Il < lipollas(e).
It follows that
(‘Po,uo) <b= (‘PO’w(tg-’uO)) < a(e),

where [|golld: = 5, igollax(e) = ale),a € K.
Let u(t) be any solution of (2) such that (¢, u) < 8§,then by (i) w is nonincreasing
and so w(t,u) < w(ty,up),t > to. Thus (po,uo) < §, implies

al(po0, 7(1))] < (o, (t,4)) < (o, Wt u0)) < ale) = (w0, (t)) < €, > to.

Theorem 2 Let the condition (i),(ii) and (iv) of theorem 1 hold.Assume further that for

some ¢o € Gg, (t,u) € Ry X S(P)va[(‘PO’r(t))] < (po, w(t,u)) < b[(<p0,r(t))],a,b €K.
Then the trivial solution u = 0 of (2) is uniformly ¢g-stable.

Proof Fore > 0,let § = b~[a(e)] independent of ¢, for a,b € K. Let u(t) be any solution
of (2) such that (¢, up) < §. Then w is nonincreasing and so

(‘)00, w(tvu)) < (goo,w(tg,uo)).

Thus
a((‘PO,T(t))] < (‘vaw(t’u)) < (<p0,w(t§,u0)) < b[(SOO’UO)] < b(6) < a(E)'
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So (o, %) < § implies (o, w(t,u)) < e. O

Theorem 3 Let the conditions of Theorem 1 hold with D¥w(t,u) <g 0 replaced by

D* (g0, w(t,w)) < —cl(o, w(t, W) € K, (3)
then the solution u = 0 of (2) is equi-asymptotically po-stable.

Proof By Theorem 1, the trivial solution of (2) is po-equistable. By (3), w(t,u) is
monotone decreasing and hence the limit w* = lim,,o, w(t,u) exists. We claim that
w* = 0.

Suppose w* # 0.Then ¢(w*) # 0,c € K.Since ¢(r) is monotone, ¢[(yo,w(t,u))] >

cl(0,w")], and s0 D*(po, w(t, u)) < —cl(wo, w")].
Integrating we obtain

(o, w(t,u)) < —c[(po, w)](t — to) + (0, w(ty, uo))-

Thus as t — oo and for some g9 € Gj,we have (g, w(t,u)) —» —oco. This contradicts the
condition a[(ye,r(t))] < (po,w(t,u)). It follows that w* = 0.

So (o, w(t,u)) = 0 as t — oo and (po,7(t)) — 0 as t — oo.

Thus given ¢ > 0,85 € Ry there exist § = §(tg) and T = T(io,€) such that for
t>to+ T,(po,up) < & implies (pg,r(t)) <e. O

Theorem 4 Assume that

(i) w € PC[R;+ x $(p),G),w(t,0) = 0, and w(¢,u)is locally Lipschitzian in u relative
to the cone K fort € Ry;

(ii) For eachte€ R,,(t,u) € Ry X S(p),andc € K

D*(po, w(t, u)) < —c[(o, 7(2))}-

(i) al(po, "(£)) < (o, w(t, w)) < H(go, r(t))) a,b € K;
(iv) (po, w(t; + 0,u + Bi(u))) < (po, w(ti,u)), Bi(0) = 0,i = 1,2,---,
then the trivial solution u = 0 of (2) is uniformly asyptotically yo- stable.

Proof Let ¢ > 0 be given. Choose § = §(¢) independent of ¢y. Let u(t) be a solution of
(2) such that (o, up) < §. Then by Theorem 2,u = 0 is uniformly ¢,-stable. Let

w* = {sup(po, w(ts,uo)) : (o, uo) < 6}.
Set T'(e) = cl(”;';,c € K, then
(w0, m(t)) < €,(po,u0) < 8,t > to + T(e). (4)
Suppose (4) is not true, then there would exist at least one t > to + T'(¢) such that
(po,u0) < & implise (po,r(t)) > €.
Since ¢ € K from condition (ii), D* (o, w(t,u)) < —c(e).
Integrating, we obtain

(o, w(t, 1)) < (po, w(ty,uo)) — e(e)(t ~ to).
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For t > tg+ T'(¢) and sufficiently large ¢,this contradicts (iii}, so case (4) is established.
a

Theorem 5 Assume that

(i) V € PC[R; x S,,G],V(t,z)is locally Lipschitzian in z relative to G, and for
(t,z) € Ry x S,,D*V(t,z) <g g(t,V(t,z));

(ii) g € PC[R+ x G,R"™) and ¢(t,u) is quasimonotonely increasing in u relative to G
foreacht € R, ;

(iii) f(t,0) = 0,9(t,0) = 0, for some ¢y € Gg,(t,2) € Ry x S,

b(llzll) < (o, V(¢,2)) < a(t, [|2[])), a,b € K;

(iv) B; € C[G,R",i = 1,2,---,¢;(u) = u + B;(u) are monotonely increasing in G
and B;(0) = 0,1;(0) = 0;

(v) (0, V(t: +0,2 + Ii(2)) < (90, $ilw(ti, 2))yi = 1,2,
then the trivial solution z = 0 of (1) satisfies each one of the stability notions of Definitiom
4, if the trivial solution u = 0 of (2) satisfies the corresponding one of the stability notions
of Definition 5.

Proof (a) Let 0 < e < p and ¢t € R, suppose that the trivial solution u = 0 of (2) is ¥o-
equistable. Then given b(e) > 0,tp € R, there exists § = §(2o,¢€), such that (po,u) < 8
implies (g, r(t)) < b(e),t > to.

Choose a[(td, ]|z|)] = (¥0,u0), then

(0, V(t5,20)) < al(t5, [I2I)] = (w0, u0) = V(5 20) < uo.

Let z(t;t0,z0) be any solution of (1) such that V(tJ,z¢) <g uo, then V(t,z) <g r(t).

Now choose §; > 0 such that a[(ty,8;)] = 6. Thus the inequalities ||z¢|| < é; and
a[(t¢,1l2zo]])] < & hold simultaneously .

Thus

bllzll) < (o, V(E,2)) < (w0, (1)) < be) = lz(tito, 20l < ¢,
whenever ||zo|| < 1.

(b) In the proof of (a) choose § = §(¢) independent of t; and follow the same argument
as in (a) to obtain the result.

(c) Suppose that the trivial solution u = 0 of (2) is quasi-equiasymptotically @p-stable,
then following the same arguments as in (a), for all t > ty + T'(¢), we find that there exists
a positive function § = §(¢y,¢) satisfying the inequalities ||zo]| < § and a[(t], ||zo||)] < o
simultaneously, it then follows that

lz(t; to, o)l < &, l|zoll < 8o, t > to+ T.

If this was not true,there would exist a divergent sequence {t;},tx > t;, + T, and a
solution z(t;tg,zy) of (1) such that whenever zo < §,we have that ||z(t;tg, zo)|| = €.
Using Theorem 3.1 in [3] we are led to a contradiction:

b(e) < (po, V(tk, 2z(tr;to,20))) < (po, m(t; to, uo)) < b(e).
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(d) Since (a) and (c) are verified together, then z = 0 is equiasymptotically ¢,-stable.
(e) Since (b) holds, choose &y and T in (c) independent of ¢y and proceed as in (c) to
obtain the result. O

Theorem 6 Let condition (i), (ii), (iv), (v) of Theorem 5 hold. Assume further that
for ¢ > 0,d > 0, (o, u0) < ||2ol|? and cljz|| < (vo,V (t,2)). If the trivial solution u = 0
of (2) is exponentially asymptotically @o- stable, then the trivial solution ¢ = 0 of (1) is
exponentially asymptotically stable.

Proof Let z(t;tp,20) be any solution of (1), then we have that V(t,z) <¢ r(t). Thus
cllzl|? < (po, V(t,2)) < (po,7(t))-

Since the trivial solution u = 0 of (2) is exponentially asymptotically ¢o-stable, then
there exist ¢ > 0, a > 0 which are both real numbers such that

(¢0,7(t)) < o(po, uo) exp[—a(t — to)],t > to,
and
cl|z||* < o(po, uo) exp[—a(t — to)].
This implies that

g
lzll < Mllzollexp[-B(t ~ to)l,t 2 to, — = M, — = 5.

al R
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