On the φ_0 -Stability of Impulsive Comparison Differential System *

WANG Jin-ru

(Appl. Math. & Phys. College, Beijing Polytechnic University, 100022, China)

Abstract: This paper mainly uses the piecewise continuous cone-valued Lyapunov's function to obtain the φ_0 -stability of impulsive comparison differential system (2), and uses the comparison equation to obtain the stability of impulsive differential system (1).

Key words: impulsive differential system; φ_0 -equistable; uniformly φ_0 -stable; equiasymptotically φ_0 -stable; uniformly asymptotically φ -stable.

Classification: AMS(2000) 34C25/CLC number: O175.12

Document code: A Article ID: 1000-341X(2003)02-0199-06

1. Introducation

Let R^n denote the *n*-dimensional Euclidean space with any convenient norm $\|\cdot\|$, and (,) the scalar product. $R_+ = [0, \infty), R = (-\infty, \infty), R_+^n = \{u \in R^n : u_i \geq 0, i = 1, 2, \dots, n\}.PC[R_+ \times R^n, R^n]$ denotes the space of piecewise continuous functions mapping $R_+ \times R^n$ into R^n .

Definition 1 A proper subset G of \mathbb{R}^n is called a cone, if

- (i) $\lambda G \subset G, \lambda \geq 0$;
- (ii) $G+G\subset G$;
- (iii) $\overline{G} = G$;
- (iv) $G^0 = \varphi$;
- (v) $G \cap \{-G\} = \{0\},\$

where \overline{G} and G^0 denote the closure and interior of G respectively, and ∂G denotes the boundary of G.

The order relation on \mathbb{R}^n induced by the cone G is defined as follows:

Let $x, y \in G$, then $x \leq_G y$ iff $y - x \in G$ and $x <_{G^0} y$ iff $y - x \in G^0$.

Definition 2 The set G^* is called the adjoint cone if $G^* = \{ \varphi \in \mathbb{R}^n : (\varphi, x) \geq 0, x \in G \}$ satisfies properties (i)-(v) of Definition 1.

Foundation item: Supported by the Young Foundation of Beijing Polytechnic University.

Biography: WANG Jin-ru (1969-), female, Ph.D.

^{*}Received date: 2000-05-15

 $x \in \partial G \text{ iff } (\varphi, x) = 0 \text{ for some } \varphi \in G_0^*, G_0 = G - \{0\}.$

Definition 3 A function $g: D \to R^n(D \subset R^n)$ is said to be quasimonotone relative to the cone G, if $x, y \in D$ and $y - x \in \partial G$ implies that there exists $\varphi_0 \in G_0^*$ such that $(\varphi_0, y - x) = 0$, and $(\varphi_0, g(y) - g(x)) \geq 0$.

Consider the impulsive differential system

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = f(t,x), & t \neq t_k, \\ \Delta x = I_k(x(t_k)), & t = t_k, k = 1, 2, \cdots, \\ x(t_0^+) = x_0. \end{cases}$$
 (1)

Where $f \in PC[R_+ \times R^m, R^m]$, $I_k \in C[R^m, R^m]$. Define S_ρ by $S_\rho = \{x \in R^m : ||x|| < \rho, \rho > 0\}$. Let $G \subset R^n$ be a cone in $R^n, n \leq m$, and $V \in PC[R_+ \times S_\rho, G]$. For $(t, x) \in R_+ \times S_\rho, h > 0$, define the function $D^+V(t, x)$ by

$$D^{+}V(t,x) = \lim_{h\to 0^{+}} \sup(\frac{1}{h})[V(t+h,x+hf(t,x)) - V(t,x)].$$

Consider the comparison differential system

$$\begin{cases} \frac{du}{dt} = g(t, u), & t \neq t_k, \\ \Delta u = B_k(u(t_k)), & t = t_k, k = 1, 2, \cdots, \\ u(t_0^+) = u_0. \end{cases}$$
 (2)

Where $g \in PC[R_+ \times G, R^n]$, $B_k \in C[G, R^n]$, and G is a cone in R^n . Let $S(\rho) = \{u \in G : ||u|| < \rho, \rho > 0\}$, $w \in PC[R_+ \times S(\rho), G]$. And for $(t, u) \in R_+ \times S(\rho)$, h > 0, define the function $D^+w(t, x)$ by

$$D^{+}w(t,u) = \lim_{t\to 0+} \sup(\frac{1}{h})[w(t+h,u+hg(t,u)) - w(t,u)].$$

Definition 4 The trivial solution x = 0 of (1) is equistable, if for each $\varepsilon > 0, t_0 \in R_+$, there exists a positive function $\delta = \delta(t_0, \varepsilon)$, which is continuous in t_0 for each ε , such that the inequality $||x_0|| < \delta$ implies $||x(t; t_0, x_0)|| < \varepsilon, t \ge t_0$.

Other stability notions can be similarly defined (see [2]).

Definition 5 The trivial solution u = 0 of (2) is φ_0 -equistable, if given $\varepsilon > 0$, there exists $\delta = \delta(t_0, \varepsilon)$ continuous in t_0 for each ε , such that the inequality $(\varphi_0, u_0) < \delta$ implies $(\varphi_0, r(t)) < \varepsilon, t \ge t_0$, where $\varphi_0 \in G_0^*$.

Note In definition 5, and for the rest of this paper, r(t) denotes the maximal solution of (2) relative to the cone $G \subset \mathbb{R}^n$.

Other φ_0 -stability concepts can be similarly defined.

Definition 6 A function $a(\cdot)$ is said to belong to the class K, if $a \in C[(0, \rho), R_+], a(0) = 0$ and a(r) is strictly increasing in r.

Definition 7 (a) A function w(t, u) is said to be positive definite relative to the cone G (or φ_0 -positive definite)if there exists $a \in K$, such that

$$a[(arphi_0, r(t))] \leq (arphi_0, w(t, u)), arphi_0 \in G_0^*.$$

(b) A function w(t, u) is said to be decrescent relative to the cone G (or φ_0 -decrescent)if there exists $b \in K$, $\varphi_0 \in G_0^*$, such that

$$(\varphi_0, w(t, u)) \leq b[(\varphi_0, r(t))].$$

2. Main results

Theorem 1 Assume that

- (i) $w \in PC[R_+ \times S(\rho), G], w(t, 0) = 0, w(t, u)$ is locally Lipschitzian in u relative to G, and for each $(t, u) \in R_+ \times S(\rho), D^+w(t, u) \leq_G 0$;
 - (ii) $g \in PC[R_+ \times G, R^n], g(t,0) = 0;$
 - (iii) For some $\varphi_0 \in G_0^*$ and $(t, u) \in R_+ \times S(\rho)$,

$$a[(\varphi_0, r(t)] \leq (\varphi_0, w(t, u)), a \in K;$$

(iv) $(\varphi_0, w(t_i + 0, u + B_i(u))) \leq (\varphi_0, w(t_i, u)), B_i(0) = 0, i = 1, 2, \dots,$ then the trivial solution u = 0 of (2) is φ_0 -equistable.

Proof Since w(t,0) = 0 and $w(t,u_0)$ is continuous in t_0 , then given $a_1(\varepsilon) > 0, t_0 \in R_+$, there exists δ_1 , such that $||u_0|| < \delta_1$, implies $||w(t_0^+,u_0)|| < a_1(\varepsilon), a_1 \in K$.

Now for some $\varphi_0 \in G_0^*$, $\|\varphi_0\| \cdot \|u_0\| < \|\varphi_0\| \delta_1$ implies $\|\varphi_0\| \cdot \|w(t_0^+, u_0)\| < \|\varphi_0\| a_1(\varepsilon)$. Thus

$$|(\varphi_0, u_0)| \leq ||\varphi_0|| \cdot ||u_0|| < ||\varphi_0|| \delta_1,$$

implies

$$|(\varphi_0, w(t_0^+, u_0))| \leq ||\varphi_0|| \cdot ||w(t_0^+)|| < ||\varphi_0|| a_1(\varepsilon).$$

It follows that

$$(\varphi_0, u_0) < \delta \Longrightarrow (\varphi_0, w(t_0^+, u_0)) < a(\varepsilon),$$

where $\|\varphi_0\|\delta_1=\delta$, $\|\varphi_0\|a_1(\varepsilon)=a(\varepsilon)$, $a\in K$.

Let u(t) be any solution of (2) such that $(\varphi_0, u_0) < \delta$, then by (i) w is nonincreasing and so $w(t, u) \le w(t_0^+, u_0), t \ge t_0$. Thus $(\varphi_0, u_0) < \delta$, implies

$$a[(\varphi_0,r(t))] \leq (\varphi_0,w(t,u)) \leq (\varphi_0,w(t_0^+,u_0)) < a(\varepsilon) \Rightarrow (\varphi_0,r(t)) \leq \varepsilon, t \geq t_0.$$

Theorem 2 Let the condition (i),(ii) and (iv) of theorem 1 hold. Assume further that for some $\varphi_0 \in G_0^*$, $(t,u) \in R_+ \times S(\rho)$, $a[(\varphi_0,r(t))] \leq (\varphi_0,w(t,u)) \leq b[(\varphi_0,r(t))]$, $a,b \in K$.

Then the trivial solution u = 0 of (2) is uniformly φ_0 -stable.

Proof For $\varepsilon > 0$, let $\delta = b^{-1}[a(\varepsilon)]$ independent of t_0 for $a, b \in K$. Let u(t) be any solution of (2) such that $(\varphi_0, u_0) < \delta$. Then w is nonincreasing and so

$$(\varphi_0, w(t, u)) \leq (\varphi_0, w(t_0^+, u_0)).$$

Thus

$$a[(\varphi_0, r(t))] \leq (\varphi_0, w(t, u)) \leq (\varphi_0, w(t_0^+, u_0)) \leq b[(\varphi_0, u_0)] < b(\delta) < a(\varepsilon).$$

So $(\varphi_0, u_0) \leq \delta$ implies $(\varphi_0, w(t, u)) < \varepsilon$. \square

Theorem 3 Let the conditions of Theorem 1 hold with $D^+w(t,u) \leq_G 0$ replaced by

$$D^+(\varphi_0, w(t, u)) \le -c[(\varphi_0, w(t, u))], c \in K, \tag{3}$$

then the solution u = 0 of (2) is equi-asymptotically φ_0 -stable.

Proof By Theorem 1, the trivial solution of (2) is φ_0 -equistable. By (3), w(t, u) is monotone decreasing and hence the limit $w^* = \lim_{t\to\infty} w(t, u)$ exists. We claim that $w^* = 0$.

Suppose $w^* \neq 0$. Then $c(w^*) \neq 0$, $c \in K$. Since c(r) is monotone, $c[(\varphi_0, w(t, u))] > c[(\varphi_0, w^*)]$, and so $D^+(\varphi_0, w(t, u)) \leq -c[(\varphi_0, w^*)]$.

Integrating we obtain

$$(\varphi_0, w(t, u)) \leq -c[(\varphi_0, w^*)](t - t_0) + (\varphi_0, w(t_0^+, u_0)).$$

Thus as $t \to \infty$ and for some $\varphi_0 \in G_0^*$, we have $(\varphi_0, w(t, u)) \to -\infty$. This contradicts the condition $a[(\varphi_0, r(t))] \le (\varphi_0, w(t, u))$. It follows that $w^* = 0$.

So $(\varphi_0, w(t, u)) \to 0$ as $t \to \infty$ and $(\varphi_0, r(t)) \to 0$ as $t \to \infty$.

Thus given $\varepsilon > 0, t_0 \in R_+$, there exist $\delta = \delta(t_0)$ and $T = T(t_0, \varepsilon)$ such that for $t \geq t_0 + T, (\varphi_0, u_0) < \delta$ implies $(\varphi_0, r(t)) < \varepsilon$. \square

Theorem 4 Assume that

- (i) $w \in PC[R_+ \times S(\rho), G], w(t, 0) = 0$, and w(t, u) is locally Lipschitzian in u relative to the cone K for $t \in R_+$;
 - (ii) For each $t \in R_+, (t, u) \in R_+ \times S(\rho)$, and $c \in K$

$$D^+(\varphi_0,w(t,u)) \leq -c[(\varphi_0,r(t))].$$

- (iii) $a[(\varphi_0, r(t))] \leq (\varphi_0, w(t, u)) \leq b[(\varphi_0, r(t))], a, b \in K;$
- (iv) $(\varphi_0, w(t_i + 0, u + B_i(u))) \le (\varphi_0, w(t_i, u)), B_i(0) = 0, i = 1, 2, \dots,$ then the trivial solution u = 0 of (2) is uniformly asyptotically φ_0 stable.

Proof Let $\varepsilon > 0$ be given. Choose $\delta = \delta(\varepsilon)$ independent of t_0 . Let u(t) be a solution of (2) such that $(\varphi_0, u_0) < \delta$. Then by Theorem 2, u = 0 is uniformly φ_0 -stable. Let

$$w^* = \{\sup(\varphi_0, w(t_0^+, u_0)) : (\varphi_0, u_0) < \delta\}.$$

Set $T(\varepsilon) = \frac{w^*}{c(\varepsilon)}, c \in K$, then

$$(\varphi_0, r(t)) < \varepsilon, (\varphi_0, u_0) < \delta, t \ge t_0 + T(\varepsilon). \tag{4}$$

Suppose (4) is not true, then there would exist at least one $t \geq t_0 + T(\varepsilon)$ such that $(\varphi_0, u_0) < \delta$ implies $(\varphi_0, r(t)) \geq \varepsilon$.

Since $c \in K$, from condition (ii), $D^+(\varphi_0, w(t, u)) \leq -c(\varepsilon)$

Integrating, we obtain

$$(\varphi_0, w(t, u)) \leq (\varphi_0, w(t_0^+, u_0)) - c(\varepsilon)(t - t_0).$$

For $t \geq t_0 + T(\varepsilon)$ and sufficiently large t, this contradicts (iii), so case (4) is established.

Theorem 5 Assume that

- (i) $V \in PC[R_+ \times S_\rho, G], V(t, x)$ is locally Lipschitzian in x relative to G, and for $(t, x) \in R_+ \times S_\rho, D^+V(t, x) \leq_G g(t, V(t, x))$;
- (ii) $g \in PC[R_+ \times G, R^n]$ and g(t, u) is quasimonotonely increasing in u relative to G for each $t \in R_+$;
 - (iii) f(t,0) = 0, g(t,0) = 0, for some $\varphi_0 \in G_0^*, (t,x) \in R_+ \times S_\rho$,

$$b(||x||) \le (\varphi_0, V(t, x)) \le a[(t, ||x||)], a, b \in K;$$

- (iv) $B_i \in C[G, \mathbb{R}^n], i = 1, 2, \dots, \psi_i(u) = u + B_i(u)$ are monotonely increasing in G and $B_i(0) = 0, I_i(0) = 0$;
- (v) $(\varphi_0, V(t_i + 0, x + I_i(x))) \le (\varphi_0, \psi_i(w(t_i, x))), i = 1, 2, \dots,$ then the trivial solution x = 0 of (1) satisfies each one of the stability notions of Definitiom 4, if the trivial solution u = 0 of (2) satisfies the corresponding one of the stability notions of Definition 5.
- **Proof** (a) Let $0 < \varepsilon < \rho$ and $t \in R_+$, suppose that the trivial solution u = 0 of (2) is φ_0 -equistable. Then given $b(\varepsilon) > 0, t_0 \in R_+$, there exists $\delta = \delta(t_0, \varepsilon)$, such that $(\varphi_0, u_0) < \delta$ implies $(\varphi_0, r(t)) < b(\varepsilon), t \ge t_0$.

Choose $a[(t_0^+, ||x||)] = (\varphi_0, u_0)$, then

$$(\varphi_0, V(t_0^+, x_0)) \le a[(t_0^+, ||x||)] = (\varphi_0, u_0) \to V(t_0^+, x_0) \le_G u_0.$$

Let $x(t;t_0,x_0)$ be any solution of (1) such that $V(t_0^+,x_0) \leq_G u_0$, then $V(t,x) \leq_G r(t)$. Now choose $\delta_1 > 0$ such that $a[(t_0,\delta_1)] = \delta$. Thus the inequalities $||x_0|| < \delta_1$ and $a[(t_0^+,||x_0||)] < \delta$ hold simultaneously.

Thus

$$b(||x||) \leq (\varphi_0, V(t, x)) \leq (\varphi_0, r(t)) < b(\varepsilon) \Rightarrow ||x(t; t_0, x_0)|| < \varepsilon$$

whenever $||x_0|| < \delta_1$.

- (b) In the proof of (a) choose $\delta = \delta(\varepsilon)$ independent of t_0 and follow the same argument as in (a) to obtain the result.
- (c) Suppose that the trivial solution u=0 of (2) is quasi-equiasymptotically φ_0 -stable, then following the same arguments as in (a), for all $t \geq t_0 + T(\varepsilon)$, we find that there exists a positive function $\delta = \delta(t_0, \varepsilon)$ satisfying the inequalities $||x_0|| < \delta$ and $a[(t_0^+, ||x_0||)] < \delta_0$ simultaneously, it then follows that

$$||x(t;t_0,x_0)|| < \varepsilon, ||x_0|| < \delta_0, t \ge t_0 + T.$$

If this was not true, there would exist a divergent sequence $\{t_k\}, t_k \geq t_0 + T$, and a solution $x(t; t_0, x_0)$ of (1) such that whenever $x_0 < \delta$, we have that $||x(t; t_0, x_0)|| = \varepsilon$.

Using Theorem 3.1 in [3] we are led to a contradiction:

$$b(\varepsilon) \leq (\varphi_0, V(t_k, x(t_k; t_0, x_0))) \leq (\varphi_0, r(t_k; t_0, u_0)) < b(\varepsilon).$$

- (d) Since (a) and (c) are verified together, then x = 0 is equiasymptotically φ_0 -stable.
- (e) Since (b) holds, choose δ_0 and T in (c) independent of t_0 and proceed as in (c) to obtain the result. \Box

Theorem 6 Let condition (i), (ii), (iv), (v) of Theorem 5 hold. Assume further that for $c > 0, d > 0, (\varphi_0, u_0) \le ||x_0||^d$ and $c||x||^d \le (\varphi_0, V(t, x))$. If the trivial solution u = 0 of (2) is exponentially asymptotically φ_0 - stable, then the trivial solution x = 0 of (1) is exponentially asymptotically stable.

Proof Let $x(t;t_0,x_0)$ be any solution of (1), then we have that $V(t,x) \leq_G r(t)$. Thus $c||x||^d \leq (\varphi_0,V(t,x)) \leq (\varphi_0,r(t))$.

Since the trivial solution u = 0 of (2) is exponentially asymptotically φ_0 -stable, then there exist $\sigma > 0$, $\alpha > 0$ which are both real numbers such that

$$(\varphi_0, r(t)) \leq \sigma(\varphi_0, u_0) \exp[-\alpha(t-t_0)], t \geq t_0,$$

and

$$c||x||^d \leq \sigma(\varphi_0, u_0) \exp[-\alpha(t - t_0)].$$

This implies that

$$\|\boldsymbol{x}\| \leq M\|\boldsymbol{x}_0\| \exp[-\beta(t-t_0)], t \geq t_0, \frac{\sigma}{c} = M, \frac{\alpha}{d} = \beta.$$

References:

- [1] LAKSHMIKANTHAM V, LEELA S. Differential and Integral Inequalities [M]. Theory and Applications, Acadmic Press, New York, 1969.
- [2] LAKSHMIKANTHAM V, LEELA S. Cone-valued Lyapunov function [J]. Nonlinear Anal., 1977, 1: 215-222.
- [3] KULEV G K, BAINOV D D. Second method of Lyapunov and comparison principle for systems with impulse effect [J]. Bull. Ins. Math. Acad. Sin., 1990, 7: 156-178.
- [4] LAKSHMIKANTHAM V, BAINOV D D, SIMEDNDV P S. Theory of Impulsive Differential Equations [M]. Singapore: World Scientific, 1989.

脉冲比较微分系统解的 φ_0 - 稳定性

王晋茹

(北京工业大学应用数理学院,北京 100022)

摘 要: 本文主要利用分段连续的 Lyapunov 函数得到脉冲比较微分系统 (2) 的 φ_0 - 稳定性,并且通过比较方程,得到脉冲微分系统 (1) 的稳定性.

关键词: 脉冲微分系统; φ_0 - 稳定;一致 φ_0 - 稳定;等度渐近 φ_0 - 稳定;一致渐近 φ_0 - 稳定.