Geometric-Harmonic Mean and Characterizations of Some Mean-Values *

LIU Zheng

(Faculty of Science, Anshan University of Science and Technology, Liaoning 114002, China)

Abstract: The purpose of this paper is to provide a direct proof on the fact that the geometric-harmonic mean of any two positive numbers can be calculated by a first complete elliptical integral, and then to give new characterizations of some mean-values.

Key words: Arithmetic mean; geometric mean; harmonic mean; geometric-harmonic mean; first complete elliptic integral.

Classification: AMS(2000) 26E60/CLC number: O178

Document code: A **Article ID:** 1000-341X(2003)02-0217-04

1. Geometric-Harmoinc mean

Let a and b be any two positive real numbers. The arithmetic, geometric and harmonic mean-values of a and b are denoted by A = A(a,b), G = G(a,b) and H = H(a,b), respectively. It is well known that the arithmetic-geometric mean-value of a and b is defined by $AG(a,b) = \lim a_n = \lim b_n$, where $a_0 = a$, $b_0 = b$ and $a_{n+1} = A(a_n,b_n)$, $b_{n+1} = G(a_n,b_n)$. In [1], we see that AG(a,b) with $0 < a \le b$ can be calculated by a first complete elliptic integral as follows:

$$AG(a,b) = \pi / \int_0^{\pi} (a^2 \cos^2 \varphi + b^2 \sin^2 \varphi)^{-1/2} d\varphi.$$

Also, the arithmetic-harmonic mean-value of a and b is defined by $AH(a,b) = \lim a_n = \lim b_n$, where $a_0 = a$, $b_0 = b$ and $a_{n+1} = A(a_n,b_n)$, $b_{n+1} = H(a_n,b_n)$. It is easy to prove that $AH(a,b) = (ab)^{1/2}$.

Now we would like to consider the geometric-harmonic mean-value of any two positive numbers a and b. Let $a_0 = a$, $b_0 = b$ and $a_{n+1} = G(a_n, b_n)$, $b_{n+1} = H(a_n, b_n)$. It is easy to prove that both $\lim a_n$ and $\lim b_n$ exist and are equal. We define the common value as the geometric-harmonic mean of a and b and denote it by GH(a, b). We will show that GH(a, b) can also be calculated by a first complete elliptic integral.

*Received date: 2000-07-14

Biography: LIU Zheng (1934-), male, Professor.

Theorem 1 If $0 < a \le b$, then

$$GH(a,b) = (1/\pi) \int_0^{\pi} (\cos^2 \varphi/a^2 + \sin^2 \varphi/b^2)^{-1/2} d\varphi.$$

Proof For $0 < a \le b$, consider the integral

$$L = \int_0^{\pi/2} (\cos^2 \varphi / a^2 + \sin^2 \varphi / b^2)^{-1/2} \, \mathrm{d}\varphi.$$

Let $\sin \varphi = (2/a) \sin \theta / ((1/a + 1/b) + (1/a - 1/b) \sin^2 \theta)$. After some calculation, we obtain

$$(\cos^2 \varphi/a^2 + \sin^2 \varphi/b^2)^{-1/2} d\varphi = (((a+b)/2ab)^2 \cos^2 \theta + (1/ab) \sin^2 \theta)^{-1/2} d\theta.$$

Set $a_1 = 2ab/(a+b)$ and $b_1 = (ab)^{1/2}$. We have

$$L = \int_0^{\pi/2} (\cos^2 \theta / a_1^2 + \sin^2 \theta / b_1^2)^{-1/2} d\theta.$$

By repeating this procedure, we obtain

$$L = \int_0^{\pi/2} (\cos^2 \varphi / a_n^2 + \sin^2 \varphi / b_n^2)^{-1/2} d\varphi \quad (n = 1, 2, 3, ...),$$

where $a_0 = a$, $b_0 = b$ and $a_n = H(a_{n-1}, b_{n-1})$, $b_n = G(a_{n-1}, b_{n-1})$.

Clearly, $(\pi/2)a_n < L < (\pi/2)b_n$, and it follows $L = (\pi/2)GH(a,b)$. Hence

$$GH(a,b) = (2/\pi)L = (1/\pi) \int_0^{\pi} (\cos^2 \varphi/a^2 + \sin^2 \varphi/b^2)^{-1/2} d\varphi.$$

2. Characterizations of some mean-values

In [2] we have seen the following three mean-values of a and b:

- (1) $M(a, b; p(r)) = p^{-1}((1/2\pi) \int_0^{2\pi} p(r) d\theta)$, where $p: R^+ \to R$, p''(x) is a continuous function in R^+ , p = p(x) is strictly monotonic in R^+ , and denote $(a^2 \cos^2 \theta + b^2 \sin^2 \theta)^{1/2}$ by r.
- (2) $M(a,b;q(s)) = q^{-1}((1/2\pi)\int_0^{2\pi} q(s) d\theta)$, where $q:R^+ \to R$, q''(x) is a continuous function in R^+ , q=q(x) is strictly monotonic in R^+ , and denote $a\sin^2\theta + b\cos^2\theta$ by s.
- function in R^+ , q = q(x) is strictly monotonic in R^+ , and denote $a \sin^2 \theta + b \cos^2 \theta$ by s. (3) $M(a, b; u(t)) = u^{-1}((1/2\pi) \int_0^{2\pi} u(t) d\theta)$, where $u : R^+ \to R$, u''(x) is a continuous function in R^+ , u = u(x) is strictly monotonic in R^+ , and denote $(\sin^2 \theta/a + \cos^2 \theta/b)^{-1}$ by t.

Now we would like to consider the following mean-value of a and b:

(4) $M(a, b; v(z)) = v^{-1}((1/2\pi) \int_0^{2\pi} v(z) d\theta)$, where $v: R^+ \to R$, v''(x) is a continuous function in R^+ , v = v(x) is strictly monotonic in R^+ , and denote $(\cos^2 \theta/a^2 + \sin^2 \theta/b^2)^{-1/2}$ by z.

We have obtained several new characterizations of some mean-values.

Lemma 1^[2] If a and b are positive real constants, then we have

 $\begin{array}{l} (1) \ (1/2\pi) \int_0^{2\pi} (\cos^2\theta/a^2 + \sin^2\theta/b^2)^{-1} \, \mathrm{d}\theta = ab; \\ (2) \ (1/2\pi) \int_0^{2\pi} (\cos^2\theta/a^2 + \sin^2\theta/b^2)^{-2} \, \mathrm{d}\theta = ab(a^2 + b^2)/2; \\ (3) \ (1/2\pi) \int_0^{2\pi} \log(\cos^2\theta/a^2 + \sin^2\theta/b^2) \, \mathrm{d}\theta = 2\log((a+b)/2ab). \end{array}$

Lemma 2 Let $v: R^+ \to R$, assume that v''(x) is continuous in R^+ . If we set

$$f(a,b) = (1/2\pi) \int_0^{2\pi} v(z) d\theta = (1/2\pi) \int_0^{2\pi} v((\cos^2 \theta/a^2 + \sin^2 \theta/b^2)^{-1/2}) d\theta$$

for all positive a and b, then

$$f_{aa}(c,c) = (3/8)v''(c) - (3/8c)v'(c),$$

where c is an arbitrarily fixed real number.

Proof The proof follows from differentiation under the integral sign.

Theorem 2 Let $A(\neq 0)$ and B be arbitrary real constants.

- (1) M(a,b;v(z)) = GH(a,b) holds for all positive real numbers a and b if and only if v(z) = Az + B.
- (2) M(a,b;v(z)) = G(a,b) holds for all positive real numbers a and b if and only if $v(z) = Az^2 + B.$
- (3) M(a,b;v(z)) = H(a,b) holds for all positive real numbers a and b if and only if $v(z) = A \log z + B.$
- (4) $M(a,b;v(z)) = (H(a^2,b^2))^{1/2}$ holds for all positive real numbers a and b if and only if $v(z) = A(1/z^2) + B$.
- (5) There exists no v(z) such that M(a,b;v(z))=A(a,b) holds for all positive real numbers a and b.

Proof (1) Suppose M(a, b; v(z)) = GH(a, b). Then

$$(1/2\pi) \int_0^{2\pi} v(z) d\theta = v((1/\pi) \int_0^{\pi} (\cos^2 \theta/a^2 + \sin^2 \theta/b^2)^{-1/2} d\theta).$$

Operating on both sides of the above equality with $\partial^2/\partial a^2$ and setting $a=c,\,b=c$ in the resulting equality, by Lemma 2 we obtain

$$(3/8)v''(c) - (3/8c)v'(c) = (1/4)v''(c) - (3/8c)v'(c),$$

and it follows v''(c) = 0. Since c is an arbitrarily fixed positive real number, we can replace c by a positive real variable z in the above equality. Hence we have v''(z) = 0 in R^+ . This implies

$$v(z) = Az + B$$

in R^+ , where A and B are real constants with $A \neq 0$.

On the contrary, suppose v(z) = Az + B and $z = (\cos^2 \theta/a^2 + \sin^2 \theta/b^2)^{-1/2}$. Then $v^{-1}(z) = (z - B)/A$, and so

$$egin{split} M(a,b;v(z)) &= v^{-1}((1/2\pi)\int_0^{2\pi}v(z)\,\mathrm{d} heta) = (1/2\pi)\int_0^{2\pi}(\cos^2 heta/a^2+\sin^2 heta/b^2)^{-1/2}\,\mathrm{d} heta \ &= GH(a,b). \end{split}$$

Clearly, we can also prove (2), (3) and (4) by the same arguments and using Lemma 1 and Lemma 2.

(5) Suppose there exists some v(z) such that M(a, b; v(z)) = A(a, b) holds for all positive real numbers a and b. Then

$$(1/2\pi)\int_0^{2\pi} v(z) d\theta = v((a+b)/2).$$

Operating on both sides of the above equality with $\partial^2/\partial a^2$, setting a=c, b=c, where c is an arbitrarily fixed positive real number, in the resulting equality, using Lemma 2, we can get

$$v''(c) - (3/c)v'(c) = 0.$$

Replacing c by a positive real variable z in the above equality yields v''(z) - (3/z)v'(z) = 0 in R^+ . This implies

$$v(z) = Az^4 + B$$

in R^+ , where A and B are real constants with $A \neq 0$.

However, by using $v^{-1}(z) = ((z-B)/A)^{1/4}$, $z = (\cos^2\theta/a^2 + \sin^2\theta/b^2)^{-1/2}$, and Lemma 1(2), after some calculations we obtain

$$M(a,b;v(z)) = (ab(a^2 + b^2)/2)^{1/4}$$

for all positive a and b. This leads to a contradiction and so (5) is proved.

Remark We can prove that $M(a, b; v(z)) = (ab(a^2 + b^2)/2)^{1/4}$ holds for all positive real numbers a and b if and only if $v(z) = Az^4 + B$, where A and B are arbitrary real constants with $A \neq 0$.

References:

- [1] BULLEN P S, MITRINOVIĆ D S, VASIĆ P M. Means and Their Inequalities [M]. Reidel, Dordrecht, 1988.
- [2] HARUKI H, RASSIAS T M. New characterizations of some mean-values [J]. J. Math. Anal. Appl., 1996, 202: 333-348.

几何 - 调和平均和一些平均值的特征

刘证

(鞍山科技大学理学院, 辽宁 鞍山 114002)

摘要:本文的目的是直接证明任何两个正数的几何 - 调和平均值都可以用第一类完全 椭圆积分来计算,并且给出一些平均值新的特征.

关键词: 算术平均,几何平均,调和平均,几何-调和平均,第一类完全椭圆积分.