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Global Attractivity in a Delay Difference Equation *
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Abstract: A new sufficient condition is given for the global attractivity of solutions of
the delay difference equation ©y41 = Zn f(Zn,Zn-1), n=0,1,.... As an application, our
results partly confirm a conjecture of G. Ladas.
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1. Introduction

In recent years, there has been a lot of interest in the study of the global attractivity
of delay difference equations. We refer to [1-5] and the references cited there for more
deuvails. In this paper, we first recall the following delay difference equation

a+ bz,
= — = 0, 1, et 1
zﬂ+1 A + Zn_1 n ) ( )
where

a, b, A €(0,00) (2)

and the initial values z_;, 2 are arbitrary positive numbers.
Eq.(1) has a unique positive equilibrium point Z. It is the unique positive root of the
equation

, (3)

Z=(b~A+/(b— A)?+4a)/2. (4)
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It can be easily shown that Z is locally asymptotically stable. There are many papers
dealing with the global asymptotic stability of Z. Some results are summed in [1]. See
also [5]. For the sake of convenience, we present them as follows:

Theorem G.L Suppose that (2) holds, and one of the following conditions is valid:

(1) b< A;

(2) 5> A and a < Ab;

(3) 5> A and Ab < a < A(24 - b);

(4) b > ((1+v5)/2)Y/%A, Ab < a, and b2/A < z < 2b.

Then Z is globally asymptotically stable.

Here, positive equilibrium point Z of Eq.(1) is said to be globally asymptotically stable
if it is both locally asymptotically stable and globally attractive. While, Z is said to be
globally attractive if any solution {z,} of Eq.(1) converges to Z for arbitrary initial values
z_y,20 € (0,00). Clearly, positive equilibrium Z of Eq.(1) is globally asymptotically stable
if and only if Z is globally attractive.

A natural question is whether (2) is sufficient for Z to be globally asymptotically stable.
For this problem, G. Ladas presented the following conjecture in both [1] and [2].

Conjecture G.L Assume that (2) holds. Then every positive solution {z,} of Eq. (1)
tends to a finite limit as n — oo.

If the conjecture is true, then it is easy to obtain lim, ., ¢, = Z. As far as we
know, the best results related to the conjecture are given in Theorem G.L.. Motivated by
Conjecture G.L., we will next investigate the global attractivity of a more general delay
difference equation than Eq.(1), namely,

Zpnt1 = Zof(Zn, Tn-1), n=201,..., (5)

where the initial values z_;,z¢ are arbitrary positive numbers.

Throughout this paper, we always suppose that the function f(z,y) in Eq.(5) satisfies
the following hypotheses:

(H1) f(=,y) € C((0,00) X [0,00),(0,00)) and lim, o+ zf(z,y) exists;

(H2) f(z,y) is nonincreasing in z, y;

(H3) the equation f(z,z) = 1 has only one positive solution Z. (Here and in the sequel,
we also always denote by Z equilibrium point or fixed point of an equation.)

It is obvious under the assumptions (H1) and (H3) that Eq.(5) has a unique equilib-
rium Z and every solution {z,} of Eq.(5) is positive. Eq.(5) has been investigated by V.L.
Kocic and G. Ladas in [3]. They obtained the following result:

Theorem V.G Suppose that the hypotheses (H1)~(H3) hold and that zf(z,z) is in-
creasing in . Then the positive equilibrium point & of Eq.(5) is globally asymptotically
stable.

Our main aim in this paper is to replace the condition “z f(z,z) is increasing in z” by
another condition. Now define the functions G(z,y) and F(z) respectively as follows:

G(z,y) = yf(y,2)f(Z,2), (6)
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F(z)

max G(z,y) for 0<z<3%z,
z<y<E

= min G(z,y) for z>1z. )
#<y<z
A positive semicycle of a nontrivial solution of Eq.(5) consists of a ’string’ terms
{z+,2r+1, - 25} with2; > Z,r <i< sand 2,1 < Z, 2,41 < Z. A negative semicycle of
a nontrivial solution of Eq.(5) consists of a ‘string’ terms {z,,Zp41,+,24} With z; < Z,
pLlilgand zp 1 > Z, 2441 > Z.
For other concepts in this paper, see [3, 5].

2. Several Lemmas

Lemma 1 Suppose that hypotheses (H1)-(H3) hold. Then every positive solution of
Eq.(5) is bounded and persists.

Lemma 2 Suppose that hypotheses (H1)-(H3) hold. Let {z,} be a nontrivial positive
solution of Eq.(5) such that for some ny > 0, either 2, > Z for n > ng or 2, < Z for
n > ng. Then for n > ng + 1, the sequence {z,} is monotonic and im,_,o zn = Z.

Lemma 3 Let F(z) € C([0,00),(0,00)) be a nonincreasing function, and let Z denote
the unique fixed point of F(z). Then the following statements are equivalent:

(a) % is the only fixed point of F%(z) in (0,00), where F%(z) = F(F(z));

(b) If X and p are positive numbers such that F(p) < X < & < p < F()A), then
A=p=2=%

For the proofs of Lemma 1, 2 and 3, see Theorem 2.2.1, Lemma 2.2.1 and Lemma 1.6.3
in [3] respectively.

Lemma 4 Suppose that the hypotheses (H1)-(H3) hold. Let {z,} be a strict oscillatory
solution of Eq.(5). Then the extreme of any semicycle, except perhaps for the first semi-
cycle, must occur at either the first or second term.

Proof Let {z,} be strictly oscillatory about Z, {#,,+1, 2,42, -, 2, } be the i-th negative
semicycle of {z,} which is followed by the i-th positive semicycle {Z4;11,Z5+2," ¢ }s
and z,,, and zps; be the extreme values in the two semicycle with the smallest possible
indexes m; and M;, respectively. Then we claim that m; —r; < 2 and M; — s; < 2. In fact,
if m; —r; >2,then 24,1 < Z, ;-2 < Z. So,

Tm; = zm,'-lf(zm,'—l» zm;—Z) > zm;—lf(i)i) = ZTm;-1-

This contradicts the assumption that z,,, is the smallest value in the semicycle. Analo-
gously, we can show that M; — s; < 2.

Lemma 5 Let F(z) be defined by (7). Then F(z) € C([0,),(0,00)) and F is nonin-
creasing in [0, 00).

Proof The proof is completely similar to that of [3, Lemma 2.3.1 ] and so is omitted here.
3. Main Results
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Theorem 1 Suppose that the hypotheses (H1)~(H3) hold and that the function F defined
by (7) has no periodic points of prime period 2. Then the positive equilibrium point Z of
Eq.(5) is globally attractive.

Proof Let {z,} be an arbitrary positive solution of Eq.(5). If {2} is not strictly oscil-
latory about Z, then according to Lemma 2, we have lim,, o Zn = Z. Therefore, in order
to establish the global attractivity of Z, it suffices in the following for us to treat only the
case that {z,} is strictly oscillatory about z.

Let {z,} be strictly oscillatory about Z, {z,,41,%r+2, -, %, } be the i-th negative
semicycle of {z,} which is followed by the i-th positive semicycle {z,;4+1,Zs4+2, " "2 Zt; )
and z,,, and z ), be the extreme values in these two semicycles with the smallest possible
indexes m; and M;, respectively. Then it follows from Lemma 4 that

m; —r; < 2, M; — s; < 2. (8)
By Lemma 1 we see that
A= lim infz, = lim infz,,, and px = lim supz, = lim sup z (9)
n—oo 1— 00 n—oo 11— 00

exist and are finite. So, there exist two positive constants P and Q with 0 < P < Q < o©
such that
0<P<A<z<u<qQ. (10)

To complete the proof of the theorem, it suffices to show that

For any given ¢ € (0,)), from (9) we know that there exists an ng € N = {1,2,---} such
that A — ¢ < z, < g+ ¢, for n > ny. Let the index ¢ be so large that r; — 1 > ny. Based
on (8), we only need to consider the following two cases.

Case (1): m; — r; < 2. Then we have

Tm; = Tri41 = zr.‘f(zr,'yzr,'—l) 2 :B,.'.f(ﬂlr.-,/,l +¢€) 2> :B,.if(:l!.,.’.,;t'F e)f(z,p+ E)

=G(p+e,2,,)> min Gp+e,y)=F(p+e). (12)
zly<pute
Case (2): m; — r; = 2. Then one can also see
Tm; = Trip2 = Trp1 f(2ri41,2r,)
= 3r.~f(2r.';zr.-—l)f(zr.'+1a3r.') 2 zr.’f(zn‘nu + E)f(ia,u' + E) (13)
=G(p+e,2,)> min Glp+e,y) = Fu+e).
F<ySute

Therefore, from (12) and (13) we find z,,, > F(u + ¢). Letting { — oo and ¢ — 0*
in this inequality gives A > F(u). Analogously, we can derive u < F()). Combining these
two inequalities and (10) we have F(u) < A < Z < p < F(A). By the assumption that the
function F has no periodic points of prime period 2 and Lemma 3, we see that (11) is true
and the proof is completed.
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As an application, we now look at Eq.(1) again. Obviously, Eq.(1) can be rewritten in
the form of Eq.(5) with

f(z,y) = (b+a/z)/(A+y), (=,9) € (0,00) x [0,00). (14)
We have the following result.

Theorem 2 Suppose that (2) holds and that a < A(2A—b). Then the positive equilibrium
point Z of Eq.(1) is globally attractive.

Proof We may easily test and verify that f(z,y) as defined by (14) satisfies hypotheses
(H1)-(H3). From (6) and (7), it is easy to see that

(a+by)(b+2)
(A+op

(a+dz)(b+2) #(A+32)

G(z’y): (A+$B)2 - (A+23)2

F(z) =

In view of Theorem 1, it suffices to prove that # is the only fixed point of F?(z). This
can be easily argued by the known assumption a < A(2A4 — b) and the expression of the
function F. Thus, the proof is over.
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