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Abstract: In this paper, we proved a result that if two meromorphic functions share
two values CM and two other values in the sense of Ey(8, f) = Eyxy(8,¢) , (k > 5), then
f is a Mobius transformation of g.
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1. Introduction

In this paper the term “meromorphic function” will mean a meromorphic function in
C. We will use the standard notations of Nevanlinna theory:

T(r,f),5(r, f),m(r, 8, f), N(r,B, f), N(r, B, f), Ni(r, B, ),

Nl("‘,ﬂ,f),Nl(T, f)vN(r’f)’G(ﬂaf))(ﬂ eCuU {00}),’
and we assume that the reader is familiar with the basic results in Nevanlinna theory as
found in [3].

For a nonconstant meromorphic function f, a number § € C U {0} and a positive
integer k (or +oo ), we write Ey)(8, f) for the set of zeros of f(z)—a with multiplicity
< k (counting multiplicity); we write Ey(8, f) for the set of zeros of f(z) — a with
multiplicity < k (each zero counted only once).

If two nonconstant meromorphic function f and g satisfy E.)(8,f) = E4o)(B,9),
then we say that f and g share SCM; If f and g satisfy f+oo)(,8,f) = EJroo)(,B,g),
then we say that f and g share S IM.

Gundersen[? proved the following result which generalizes a well-known result of
Nevanlinna called Four-Point Theoreml!.
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Theorem A Let f and g be nonconstant meromerphic functions. Assume that f and
g share two values 0 and oo CM, and that they share two values 1 and a(# 0,00,1) IM.

(i) If a= -1, then fg=1,0r f+g=0, or f=g.

(ii) If a =1/2, then (f —(1/2))(¢ —(1/2))=1/4, or f+g=1lor f=g.

(iii)If a=2, then (f-1)(g—-1)=1,0or f+g=2o0r f=g.

(iv) If a # —1,1/2,2, then f =g.

Because as we know if f and g share two values 0 and oo CM, and share two other
values 1 and a(# 0,00,1) IM, they share all four values CM (See [5]). Theorem A is
equivalent to say f and g share all four values CM and we get the same result.

In 1998, Hideharu Ueda got the following result.

Theorem B[ Let f and g be two non-constant meromorphic functions. Assume that
f and g share two values 0 and co CM, and that they satisfy Ey)(a;, f) = E)(aj,g) for
j = 3,4, where ag = 1,a4 = a(# 0,00,1,) and k(> 12) is a positive integer. Then f and
g satisfy one of the following cases:

(i) f=g;

(ii) f=~ganda=-1;

(iii) f=-g+2and a=2;

() (f-Dlg-1)=tanda=};

(v) fg=1landa = -1;

(vi)(f-1)(g—-1)=1anda=2;

(vii) f=~g+1anda=1.

In (1], H. Ueda points out that he doesn’t know if we can still keep the result in
Theorem B when 2 < k < 12. In this paper, we obtain the following result, which tells
that we can keep the result in Theorem B when k(> 5). So it is an improvement of
Theorem B .

Theorem 1 Let f and g be nonconstant meromorphic functions. Assume that f and g
share two values 0 and co CM, and that they satisfy Ey(aj, f) = Ey)(a;,g) for j = 3,4,
where ag = 1,a4 = a(# 0,00,1,—1,) and k(> 5) is a positive integer.

(i)Ifa= -1, then fg=1,0r f+g=0,0r f=g.

(i) If a =1/2, then (f —(1/2)}{g —(1/2))=1/4 or f+g=1lor f=yg.

(iii)If a=2, then (f-1)(g—1)=1or f+g=2o0r f=y.

(iv)If a # -1,1/2,2, then f=g.

2. Notations and terminologies

In this Section, we introduce some essential notations and terminologies.

(i) Let f,g be distinct nonconstant meromorphic functions. For r > 0, let T'(r) =
max{T(r, f),T(r,g)}. We write a(r) = S(r) for every function o : (0,0) — (~00,+00)
satisfying o(r)/T(r) — 0 for » — 400 possibly outside a set of finite Lebesgue measure.

(i) Let f,g be nonconstant meromorphic functions. we denote by N.(r,B; f,g9) =
N(r,B) ( resp.Ng(r,B;f,9) = Na(r,B8)) the counting function of those common 3-
points of f and g with the same multiplicity (resp. with the different multiplicities ),
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each point counted only once regardless of multiplicity, and we write
Wi(",ﬂ; fag) = Wi(raﬂ) = ]_V—c(raﬂ) + Wd(raﬂ)-

We say that f and g share BCM" if N(r,B, f)—Nc(r,B) = S(r, f) and N(r,B,9)—
N(r,8) = S(r,g) hold. Similarly, if N(r,B,f)— Ni(r,B) = S(r,f) and N(r,8,9) -
Ni(r,B) = S(r,g) hold, then we say that f and g share §IM". These notions CM"
and IM" are slight generalizations of CM and IM , respectively.

(iii) Let f and g be nonconstant meromorphic functions. For 8,7(€ CU{0}),B # v
we put

mp (r) = mp,(r; f,9) = m(r, B, f)+m(r,v, f) + m(r, B,9) + m(r,7,9),
Noy(r)=Npy(rif,9) =N(rif=B.g#B)+N(r;f =79 # 1)+
N(rig=B8,f2B)+ N(rig=7.f #7),
N (r) = Ng (7 f,9) =Ne(r,B) + Ne(r,7),
N (r)= N4 (i f,9) =Na(r,8) + Na(r,7),
Ngy(r) = Npy(r; f,9) = N (7i f,9) + Ng o (7; f,9) = Ni(r,8; f,9) + Ni(r,7: . 9),

where for example, N(r; f = 8,9 # B) denotes the counting function of those S— points
of f which are not —points of g ,each point counted only once.

3. Preparations for the proof of Theorems 1

We need a slight generalization of Theorem A:

Theorem A’ Theorem A remains still valid if CM and IM are replaced by CM" and
IM", respectively.

In order to prove this fact we only need to use the argument (due to Mues ) in the
proof of Theorem 1 in [4] by replacing CM and IM by CM” and IM”, respectively.

In the rest of this section, we assume that f and g are distinct nonconstant meromor-
phic functions sharing a; = 0 and a; = co CM and satisfying Ey(a;, f) = Ey(a;,g) for
j = 3,4, where a3 = 1,a4 = a(# 0,00,1) and k(> 2) is a positive integer. We write, for
example,

N(r,0,f) = N(r,0,9) = N(r,0),
N(r,o00, f) = N(r,00,9) = N(r,00),
N(r,0,f) = N(r,0,9) = N(r,0),
N(r,00,f) = N(r,00,9) = N(r,0),
Ny(r,0, f) = N1(r,0,9) = Ny(r,0),
Ni(r, 00, f) = Ni(r,00,9) = N1>(r,oo),
Ni(r,0,f) = N1(r,0,9) = Ny(r,0),
Ni(r,00,f) = Ny(r,00,9) = N1(r,00).
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Lemma 19 $(r) = S(r, f) = S(r,9).

Lemma 2{1 Let a(r;f'=¢ =0,f #0,9 # 0) denote the number of distinct common
zeros of f' and ¢’ which are neither zeros of f nor g in |z| < r. Put N(r;f' = ¢’ =

0,f # 0,9 #0) = [f{it;f' =g =0,f#0g#0)-a0f =g =0,f#0,g#
0)}/tdt +7(0; f' =¢' =0,f #0,9 # 0)logr. If g/f is not a constant, then

N(rif'=¢' =0,f#0,9#0) = S(r).
Lemma 3[¢ Let n/(r, f) denote the number of multiple points of f in |z| < r such

that f # 0,00,1,a, where a point of multiplicity m is counted (m — 1) times. Put
Ni(r, f) = [g{n1(¢t, £} —ni(0, f)}/tdt + n{(O, f)logr. If N{(r,g) is similarly defined, then

N{.(ri £,9) + kN1a(r; f,9) + Ni(r, f) + N{(r,9)
< 2{N(r,0) + N(r,00)} + S(r). (3.1)

Now, we introduce some auxiliary functions:

f'f g'y
- - , 3.2
PO -e) G- De-a 42
f g
_ _ _ 3.3
8 2 Rl gy Py (89
With the aid of these auxiliary functions, we obtain some basic conclusions:
Lemma 4[6
(i) -, ., _
2{N1(r,0) + Ni(r,00)} + Ni(r, ) + N1(7,9) < N14(r) + S(r). (3.4)
(ii) If neither 7 =0 nor py = 0, then
N(r,0) + N(r,00) < 2{N14(r) + N{,(r)} + S(r). (3.5)

4, Proof of Theorem 1

In what follows we assume that f and g are distinct and satisfy the assumptions of
Theorem 1, and so there is an entire function o satisfying g = e“ f (e* # 1).

Case 1 We first consider the case that e® is a constant C (# 0,1). From the assumptions
Ek)(l,f) = Ek)(l,g) and Ek)(a, f) = Ek)(a,g) it follows that

0(1,9),0(a,g) > k/(k + 1).
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If C # a, we also obtain
' O(C,g) 2 k/(k+1),

and so
O(l,g) + G)(a,g) + G(Cvg) 2 3k/(k + 1) > 2,

a contradiction. This shows C = a. Further if a? # 1, we also obtain

@(az,g) > k/(k+1),

and so

0(1,9) + ©(a,9) + 0(a’,g) > 3k/(k + 1) > 2,
a contradiction. This shows a? = 1,i.e.,.a = ~1 and f 4 ¢ = 0. In this case we remark
that

N(r,1,f)= N(r,-1,g9),N(r,—1,f) = N(r,1,9)
are not necessarily S(r)!

Case 2 We next consider the case that e is nonconstant. We divide our argument into
several subcases:

2.1. The case ¢; =0

¢1 = 0 implies that any 1-and a— point of f (resp. g¢) are a 1- or an a— point of
g (resp. f). By Lemma 2, we deduce from the assumptions Ey)(aj, f) = Ey(aj,g) for
j = 3,4 with a3 = 1,a4 = a that N(r;f = 1,9 = a) + N(r; f = a,9 = 1) = §(r),
(where N(r;f = 1,9 = a) denote the counting function of common roots of f = 1
and g = a, each counted only once,) and so by Lemma 1, f and g share two values
1 and a IM". Hence by Theorem A’, f and g are connected with one of the relations
stated in Theorem A. Further, straightforward computations show that only two relations
(F=Q/2)}(g — (1/2)) = 1/4 (with a =1/2) and (f ~1)(g — 1) =1 (with a = 2) are
suitable for ¢, = 0.

2.2, The case ;=0
The same reasoning as in the case 2.1 shows that only two relations f + g = 2, (with
a=2)and f+g=1 (with a = 1/2) are suitable for ¢, = 0.

2.3. The case ¢; £Z0,p2 0
From Lemma 2, noting that Eyy(aj, f) = Ex)(a;,9), (5 = 3,4) we can get

N{y(r) = 5(r).
In fact, since N{,(r) = N{',(r; f,g) = Na(r,1) + N4(r,a), and noting that Ey(a;j, f) =
Ey(aj,9), (7 = 3,4) we have, for any common 1- (resp. a-)points z; of f and g with
the different multiplicities, both of the multiplicities are more than k(> 5). So we have
f'(20) = ¢'(26) = 0, f(20) = 1 (resp. a) # 0 and g(z) = 1 (resp. a) # 0. Hence from
Lemma 2, if g/ f is not a constant, we can get

Ny o(r) = Ny o(ri £,9) = Na(r,1) + Na(r,a) < N(r; f = g = 0,f # 0,9 £ 0) = 5(r).
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If g/f is a constant, since f and g share two values 0 and co CM, we can easily get
that f = g.

Combining (3.1) and (3.5), we have
(k ~ 4)N1a(r) < 3N{,(r) + S(r). (4.1)

Taking the fact k > 5 into account, we deduce that N 4(r) = S(r).

Hence, }V{',a(r) = S(r) and Ni,(r) = S(r) hold . From (3.4) and (3.5) we obtain
N(r,0) + N(r,0) = S(r), and so by Lemma 1 and the second fundamental theorem
F(r1, £), N(r,a, f) = T(r. f) + S(r) and N(r,1,9), 7 (r,a,9) = T(r,g) + 5(r). On the
other hand, Nj4(r) = S(r) implies that f and g share two values 1 and a IM”, and
so we deduce from Theorem A’ that f and g are connected with one of the relations in
Theorem A. Therefore we obtain fg =1 with a = —1 in this case.

This completes the proof of Theorem 1 .
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