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1. Introduction

During the last twenty years many results concerning random coincidence points of
various types of operators have been obtained and a number of their applications have
been given. Hence, it is necessary to prove a random coincidence point theorem under very
mild conditions that includes most of the known results and which is applicable to random
differential equations, random integral equations, random approximations etc. In order to
generalize the well known contraction principle of Banach to multivalued functions and
random fixed point theorems, many authors ([2], [5], [7], and [9]) introduce more general
contractive inequalities. We intend to consider a class of generalized contractions that
includes the classes considered in [2], [5], [9] and that enables us to prove a more general
random coincidence point theorems for multifunctions.

2. Preliminaries

Through out this paper (X,d) is a separable complete metric space and (Q, §) is
measurable space. Let 2% be the family of all subsets of X, C B(X) denotes the family of
all nonempty closed bounded subsets of X.

Definition 2.1 A mapping p: Q — 2% is called measurable if for any open subset C of
X, pY(C)={w e Q:pu(w)NC # 0} € §. This type of measurability is usually called
weakly measurable (cf. [4]), but in this paper since we only use this type of measurability,
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we omit the term “weakly” for simplicity.

Definition 2.2 A mapping £ : Q@ — X is said to be measurable selector of a measurable
mapping p : Q@ — 2% if y is measurable and for any w € Q, £(w) € p(w).

Definition 2.3 A mapping f : @ x X — X is called a random operator if for any
z € X, f(.,z) is measurable. A mappingT :Q x X — CB(X) is called a multifunction if
for every ¢ € X,T(.,z) is measurable.

Definition 2.4 A measurable mapping € : @ — X is called a random fixed point of
a multifunction (random operator) T : X X — CB(X)(f : @ x X — X) if for every
w € Q,8(w) € T(w,{(w))(f(w,€é(w)) = &(w)). A measurable mapping £ : @ -~ X is
a random coincidence point of T : @ x X — CB(X) and f : @ x X — X |if for every
w € Q, f(w,é(w)) € T(w,&(w)). We denote II(T) the set of random coincidence points
of T. Mappings T : X — CB(X),f : X — X are compatible if, whenever there is a
sequence {z.} in X satisfying lim,, fz, € lim, Tz, (provided lim,fz, exists in X and
lim,Tz,, exists in CB(X)) then lim,H(fTz,,T ft,) = 0, where H is a Hausdorff metric
on CB(X) induced by the metric d of X; that is, for A, B in C B(X),

H(A,B) = ma.x{sup P(a,B), zug P(b,A)},
€
where P(z,E) is the distance from a point z € X to a subset E C X,i.e.,P(z,E) =
inf {d(z,y) : y € E}. Random operators f : @ x X — X and T: Q@ x X — CB(X) are
compatible if f(w,.) and T(w,.) are compatible for each w € §.
For the remaining part of this section $,T : @ x X — CB(X) are multifunctions,
f:Qx X — X is random operator and £, : @ — CB(X) is measurable mapping for each
n=0,1,2, -

Definition 2.5 For a map §, : @ — X if there exists a sequence {{,(w)} such that
F(0,Ens1(w)) € S(w,En(w)), (101 Enga(w)) € T(w, €nga(w)),n = 0,1,2, -+, then O;(6o(w)) -
{f(w,&a(w)): n=1,2,3,---, foreachw € Q} is the orbit for (S, T, f) at {o(w). Of(w,&o(w))
is called a regular orbit for (S, T, f) if for each n, for each w € Q,

d(f(w, €ns1(w)), F(w, Ens2(w))) < H(S(w,{n(w)), T(w, €nt1(w)))-

Definition 2.6 If there exists a measurable map £ : @ — X such that f(w,&.(w)) —
f(w,é(w)) for all w € Q, then Of(éy(w)) converge in X. If O¢(&,(w)) converge in X, then
X is called (S, T, f, £o(w)}-orbitally complete.

For every § > 0, the measurable mapping g(.,3) : & — (0,1) is said to have property
(Q): if for s > 0, there exists measurable maps af.,s) : & — (0,00) and F(.,3) : @ — (0,1)
such that for every w € ,0 < r — s < a(w, s) implies g(w,r) < F(w, s).

Definition 2.7 A pair (5,T) of multivalued random operators is said to be asymptotically
regular with respect to f(w,.) at £y(w), if for each sequence {{,(w)}, f(w,&n+1{w)) €
S(w, én(w)), f(w,nt2(w)) € T(w,€ns1(w))), limn d(f(w, €nsr(w)), f(w,ny2(w))) = 0
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for each w € Q. The sequence {f(w,&,(w))} is said to be asymptotically T(w, .)-regular
with respect to f(w,.) if P(f(w,&n(w)), T(w,&a(w))) — 0, for each w € (1.

Consider the set R of all continuous functions g : [0,00)® — [0,00) satisfying the
following conditions:

(i) 9(1,1,1,2,0) = ¢(1,1,1,0,2) = k € (0,1);

(i) g(azi,azq,azs, azq,azs) < ag(e1,z2,z3,24,25) for z; € [0,00),4 = 1,5 and
a>0;

(iii) if z;,y; € [0,00),2; < y; for i=1, 4, we have g(z1, 22, 23, 24,0) < g(v1,¥2,¥3,v4,0)
and g(z1,22,23,0,24) < g(¥1,¥2,93,0,v4).

3. Main Results

In this section we give stochastic version of results of Hideaki, Kaneko ([3], Theorem
2) and singh ([10], Theorem 4).

Let S,T : 2 x X — CB(X) be two multifunctions and let f : X X — X be a random
operator such that,

H(S(w,z), T(w,y)) <a(w)max {d(f(w,z), f(w,y)), P(f(w,z), S(w,z)), P(f(w,y),T(w,v)),
[P(f(w’z)’T(wsy)) + P(f(wvy)7 S(wa 2:))]/2} T (*)
for all z,y € X and for all w € 2, where a : @ — (0,1) is measurable map.

Theorem 3.1 Let S,T : @ x X — CB(X) be two continuous multifunctions and let
J:Qx X — X be a random operator such that S(w,X)U T(w,X) C f(w,X) and for
a measurable map § : Q@ — X, f(w,X) is (S, T, f,€(w))- orbitally complete, for every
w € ), and satisfy (*) for allw € Q and z,y € X. Then there exists a random coincidence
point of S,T and f.

Proof Let f(w) = /a(w) for each w € Q. Let & : § — X be a measurable map-
ping and yo(w) = f(w,&(w)). Let & : @ — X be a measurable mapping such that
¥ Q@ — X defined by yi1(w) = f(w,&(w)) € S(w,éo(w)), for all w € @ . Indeed,
since § is a continuous random operator, we conclude that, for every v € X, the map
(w,z) — P(v,S(w,z)) is a caratheodory function (that is measurable in w € , contin-
uous in z € X). Thus it is jointly measurable. Hence, since £y : @ — X is measurable,
w — P(v,5(w, {o(w)) is measurable too, therefore w — S(w, {y(w)) is weakly measurable
by Wagner ([11], p868). By Kuratowski, K ([8], selection Theorem 8), there exists a mea-
surable map £ : @ — X such that y;(w) = f(w,&(w)) € S(w,€o(w)) for all w € Q. It
further implies by, Papageorgiou ([9], Lemma 2.3) and the fact that T'(w, X) C f(w, X)
for every w € Q. There exists a measurable mapping £ :  — X such that, for each
w € Q,y2(w) = f(w,&2(w)) € T(w, & (w)) and
d(f(w, & (w)), f(w, &(w))) < [1/B8(w)]H(S(w,&o(w)), T(w, &1(w)))
< B(w) max {d(f(w, &o(w)), f(w, € (w))), d(f(w, & (w)), F(w, Ex(w)),
[d(f(w, &o(w)), f(w, &1(w))) + d(f(w, & (w)), f(w, E2(w)))]/2}.

If there exists some w € § such that

d(f(w, El(w))a f(vaZ(w))) 2 d(f(wa&)(w))’ f(w,&(w)))
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then
d(f(w, &1(w)), f(w, &2(w))) < B(w)d(f(w, &1(w)), f(w, £2(w)))

a contradiction, since f(w) < 1, thus for every w € 1.

d(f(w, &1(w)), f(w, £2(w))) < B(w)d(f(w, §o(w)), f(w, &1(w)))

By induction, we produce a sequence of measurable mapping ¢,, : § — X such that, for any

k 3 0, and any w € Q, f(w,&n41(w)) € S(w,&an(w)), f(w, Eapya(w)) € T(w,&a41(w))
an

d(f(w, €a(w)), f(w,€nt1(w))) <B(w)d(f(w,n-1(w)), f(w,n(w)))
<. S A (w)d(f(w, €o(w)), f(w, &1(w)).

Further more, for m > n,

d(f(w, €a(w)), F(w, &m(w))) < {B™(w) 48" (w)+. . +B™ 7} (w)}d(f(w, Eo(w)), f(w, &1 (w)))-

It follows that, for any w € Q,{f(w,&.(w))} is a cauchy sequence in f(w,X). The
orbital completeness of f(w,X) allows us to obtain a measurable map £ : @ — X such
that f(w,&n(w)) — f(w,&(w)) for all w € Q. It further implies that f(w,&u41(w)) —
f(w,&(w)) and f(w, Eapp2(w)) — f(w, é(w)). Thus we have, for any w € 9,

P(f(w,£(w)), S(w,{(w)))
< d(f(w,€(w)), f(w, €arq2(w))) + P(f(w, Lok 2(w)), S(w, €(w)))
< d(f(w,§(w)), f(w, Earv2(w))) + H(T (w, Eak41(w)), S(w, {(w)))
< d(f(w, €(w)), f(w, ae42(w))) + a(w)maz{d(f(w, Ears1(w)), fw, £(w))),
P(f(w,&(w)), S(w,{(w))), d(f(w, Earv1(w)), F(w, E2r42(w))),
[d(f(w, {(w)), f(w, arq2(w))) + P(F(w, a1 (w)), S(w, §(w)))}/2}-

Letting £ — oo, we have

P(f(w,&(w), S(w,{(w))) < a(w)P(f(w,{(w)), S(w,E(w)))

since a(w) < 1, we conclude that f(w,£{(w)) € S(w,€(w)), for each w € Q. Similarly,
f(w, €(w)) € T(w,£(w)), for each w € Q.
The following theorem is the stochastic version of Singh ({10}, Theorem 4).

Theorem 3.2 Let X be a separable compact metric space and let S,,T, : 1 x X —
CB(X) be continuous multifunctions which converges pointwise to the functions S,T :
Q2xX — CB(X) andlet f: Q2 x X — X be a random operator such that §(w, X) U

T(w,X) C f(w,X) and f(w,X) is compact for every w € Q. If there exists a measurable
mapping a : Q8 — (0,1) such that for all z,y € Q,
H(Sn(w,z), Ta(w,2)) <a(w)max {d(f(w,z), f(w,y)), P(f(w,2), Sa(w,2)), P(f(w,y), Tn(w)),
[P(f(w,y), Sn(w,2)) + P(f(w,z), Ta(w,y))]/2}.
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Then there exists a random coincidence point of S,T and f.

Proof We can easily prove this theorem by applying theorem 3.1 and using the approach
of Singh[10].

Remark 3.1 If, in (*), each of the terms P(f(w,z),T(w,y)) and P(f(w,y), S(w,z)) is
replaced by 1/2[P(f(w,z),T(w,y)) + P(f(w,y),S(w,z))], we obtain stochastic version of
Theorem 4 of Hideaki, Kanekol?l.

Let §,T : @ x X —» CB(X) be two multifunctions and f : 2 x X — X be random
operator such that

H(S(uJ,:c),T(w,y)) SQW(d(f(wvz)’ f(w, y)),P(f(w,a:),S(w,:c)),P(f(w,y),T(w,y)),
P(f(w,z),T(w,y)), P(f(w,y), S(w,2)))- - **)

for all w € Q and for all z,y € X for some g, € R, such that h : @ — (0,1), h(w) =
gw(1,1,1,2,0) is a measurable function.

Lemma 3.1 If§,T : Q@ x X — CB(X) are multifunctions and f : @ X X — X be random
operator satisfying (**) then II(S) = II(T) and for f(w,{(w)) € II(S) = II(T') we have
S(w,é(w)) = T(w, €(w)) for all w € Q. where £ : @ — X is measurable map.

Proof Let f(w,{(w)) € II(S). we have then f(w,£(w)) € S(w,{(w)),w € Q, and we
deduce

P(f(w,&(w)), T(w,{(w))) < H(S(w,{(w)), T(w,€(w)))
< 9u(0,0, P(f(w,{(w)), T(w, €(w))), 0, P(f(w,€(w)), T(w,{(w)))).

We obtain P(f(w,&(w)),T(w,€&(w))) =0, w € Q. So that f(w,{(w)) € T(w,£(w)) for all
w € Q. Hence II(S) C II(T) similarly we have that II(T') C II(S) and we conclude thus
I(S) = I(T). If f(w,&(w)) € II(S) = II(T) we get

H(S5(w,{(w)), T(w,£(w))) < 9u(0,,0,0,0,0) = 0

so that S(w,{(w)) = T'(w, £(w)), for all w € 9.
The improved version of Theorem 2.1 of Adrian Constantin/!! for random coincidence
point is as follows.

Theorem 3.3 Let S,T : O x X — CB(X) be multifunctions and f : @ X X — X be
random operator such that

(i) S(w,.),T(w,.) are both continuous for all w € §;

(ii)) S(.,z),T(.,z) are both measurable for all z € X;

(iii) S,T, f satisfy (**) for all w € Q and all z,y € X;

(iv) S(w,X)UT(w,X)C f(w,X) and for a measurable map & : @ — X, f(w, X) is
(S,T, & (w))-orbitally complete, for every w € Q;
Then S,T and f have the same non empty set of random coincidence points and if

f(w,é(w)) € II(S) = II(T) we have S(w,{(w)) = T(w,£(w)) for all w € Q.
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Proof We define a sequence of measurable mappings &, : @ — X such that f(w,{2n41(w)) €
S(w, &an(w)), w € Q, and f(w, {2nt2(w)) € T(w, fans1(w)), w € N, then we obtain,
d(f(w, Eanta(w)), F(w, E2ns2(w))) < (1/VA(w)H(S(w, &2n(w)), T(w, é2ns1(w)))
< [1/VA(w)lguw(d(f(w, E2n(w)), f(w, E2ns1(w))), d(F(w, E2n(w)), f(w, E2nta(w))),
d(f(w, Eant1(w)), f(w, Eant2(w))), d(f(w, E2n(w)), f(w, E2nr(w)))+
d(f(w, Eans1(w)), f(w, Eant2(w))), 0).

Since h(w)[1/\/h(w)] = y/h(w) < 1 we obtain by Lemma 1.4 and Lemma 1.3 of Adrian
Constantin that,

d(f(w, E&2ns1(w)), F(w, E2n42(w))) < VA(w)d(f(w, E2n(w)), f(w, E2ns1(w))).
We deduce

d(f(w,&on(w)), f(w, Gans1(w))) < (R f(w, Eo(w)), f(w, &(w))),

where n > 1. Now h(w) < 1, w € 0, implies that {f(w,{,(w))} is a Cauchy sequence in
f(w, X) The orbital completeness of f(w,X) allows us to obtain measurable map £ : @ —
X such that f(w,€n(w)) — f(w,€(w)) for all w € Q, We have

P(f(w,&(w)), S(w, &2n(w)))
< P(f(w,€(w)), T(w, 2nt1(w))) + H(S(w, &2n(w)), T(w, E2n41(w)))
< d(f(w,&(w)), f(w, Eant2(w))) + gu(d(f(w, E2n(w)), F(w, E2ns1(w))),
P(f(w,&2n(w)), S(w, E2n(w))), P(f(w, E2ns1(w)), T(w, fani1(w))),
d(f(w, &2a(w)), f(w, €2n41(w))), 0).

Letting n — oo we get

P(f(w,€(w)), S(w,£(w)))

< 9u(0, P(f(w,&(w)), S(w,§(w))), P(f(w, €(w)), T(w,{(w))), P(f(w, {(w)), T(w,£(w))),0)
< u(P(f(w,£(w)), T(w, £(w))), P(f(w,€(w)), S(w, £(w))), P(f(w,€(w)), T(w,€(w))),
P(f(w,&(w)), T(w,&(w))) + P(f(w,£(w)), $(w,{(w))), 0)-

By Lemma 1.3 of Adrian Constantin we obtain

P(f(w,&(w)), S(w,€(w))) < h(w)P(f(w,&(w)), T (w,{(w))).
Similarly we have

P(f(w,€(w)), T(w,&(w))) < h(w)P(f(w,&(w)), $(w,§(w))).

| Since h(w) < 1, for all w € Q, we obtain P(f(w,{(w)),S(w,€{(w))) = 0 for all w € €.
Hence II(S) # 0 and from Lemma 3.1 we have that S(w, {(w)) = T(w,§(w)) for all w €
and f(w,£(w)) € II(S) = II(T) # 0. Hence the proof.
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Theorem 3.4 Let T : @ x X — CB(X) be multifunction and let f : 2 x X — X bea
continuous random operator such that T(w,X) C f(w,X) for every w € Q. If f and T
are compatible and for all z,y € X and w € Q

H(T(w,z),T(w,y)) < g(w,d(f(w,2), f(w,y)))d(f(w,2), f(w,y)) (***)

where g(.,7): Q — (0,1) for every r > 0, has property (Q). Then there exists a sequence
{€n(w)} of measurable mappings which is asymptotically T(w,.)-regular with respect to
f(w,.) and f(w,§,.(w)) converges to a random coincidence point of f and T

Proof We define two sequences of measurable mappings such that for any w € §) and
n > 0, yo(w) = f(w,&(w)) € T(w,En—1(w)). Further, for each w € Q,

d(Ynt1(w), Yns2(w)) = d(f(w, €ns1(w)), F(w, énsa(w)))

< g(w’ d(f(wafn(w )1 f(w7 €n+1(w))))d(f(wa£ﬂ(w))v f(w)€ﬂ+l(w)))

< d(f(w, &n(w)), f(w, &ns1(w))) = d(yn(w), Yns1(w))-
It follows that the sequence {d(yn{w), Yyn+1{w))} is decreasing and converges to its greatest
lower bound which we denote by s. Now s > 0, in fact, s = 0. Otherwise by property
(Q) of g there exists measurable mappings a(.,s) :  — (0,00), F(.,s) : @ — (0,1), such
that 0 < r — s < a(w, s) implies g(w,r) < F(w,s). For a(w,s) > 0, there exists a natural
number N such that, whenever n > N,

d(yn (), Jur1(w)) ~ s < a(w, 3).
Hence,
g(w, d(yn(w), yn41(w))) < a(w, s).
Let, for each w € Q,
a(w) = max {g(wv d(yO(w)’ yl(w)))’g(w’ d(yl(w)’ yz(w)))’ oo 79(“’: d(yN-—l(w)’ yN(w)))v S(w’
Forn=1,2..,
d(yn(w)’ yn+1(w)) < g(w’d(yn—l(w)’yn(w)))d(yn—l(w)a yn(w))
< o(w)d(yn-1(w), yn(w)) < ... < o(w)"d(yo(w), y1(w)) — 0

as n — oo which contradicts the assumption that s > 0. Consequently lim, d(y,.(w), ynt+1(w))
= 0 which implies that

lim P(f(w, ,(0)), T(w, €a(w))) = 0.

Therefore the sequence {£,(w)} is asymptotically T'(w,.)- regular with respect to f(w,.).
Assume that {f(w,&.(w))} is not Cauchy sequence. Then there exists a positive number
t and two subsequences {n(7)}, {m(i)} of natural numbers with n(¢) < m(:) and such that
d(Yn (i) (W) Ym(i)(w)) 2 ¢, A(Yn(i) (W), Ym(i)-1(w)) < t for i = 1, 2,... Then for each we Q,

t < d(Yn(i) (W), Ym() (W) < d(Unii) (W), Ymy-1(w)) + d(Ymi)—1(w), Yin(i)(w))-
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Letting ¢ — oo and using the fact d(y,(;)(w), Ym(i)-1(w)) < t, we obtain
im d(yy, i) (w), Ymi) (w)) =

For this ¢ > 0, there exist measurable mappings a(.,t) : @ — (0, 00), F(,,t) : @ — (0,1)
such that 0 < r — t < a(w,t) implies g(w,r) < F(w,t). For a(w,t) > 0, there exists a
natural number Ny such that ¢ > Ny implies

0 < d(Yn(i)(w), Ymesy(w)) — t < a(w, ).
Hence, for ¢ > Ny,

9(w, Yy (w), Ym(s)(w))) < Flw, ).
Thus for each w € Q,

d(Yn (i) (W), Ym(i) (w))
L d(Yn (i) (W), Yn(iy+1(w)) + A(Yn()+2(w), Ym )42 (W) + (Y (i) 41 (W)s Y (w))
< d(Yn i) (W), Yn(iy+1(w)) + 9(w, d(Yn(i) (W), Yin (i) (0))) A Yy (W), Ym(i) (w))+
A(Ym(i)+1{w), Ym ) (w))-
< d(Yn (@) (W), Yn(iy+1(w)) + F(w, 8)d(Yn(i) (0), Ym (i) (w)) + d(Ymy41(w), Yy (w))-
Letting ¢ — oo, we get t < F(w,t)t < t, a contradiction. Thus {f(w,én(w))} is a Cauchy
sequence. By completeness of the space, there exists y(w) € X such that for each w € (,

d(yn(w),y(w)) — 0 as n — oo. Continuity of f implies that d(f(w, y.(w)), f(w,v(w))) —
0. It further implies that

H(T(w, ya(w)), T(10,7(w))) <(w, d(f(w, ya(w)), f(,7(w)))d(f (0, ya(w)), f(w, ()
<d(f(w,3n(w)), f(w,7(w))) = 0.

By (***) and the fact that {f(w,&.(w))} is a Cauchy sequence implies that there ex-
ists {(w) € CB(X) such that T(w,&,(w)) — £(w). (By Itoh ([6], Preposition 1), £ is
measurable.) Furthermore for each w € Q,

d(7(w)’ E(w)) < H?H(T(waen—l(w))aT(wv Eﬂ(w))) =0.
Now

P(f(w, ynt1(w)), T(w, yn(w))) < H(f(w, T(w,€a(w))), T(w, f(w,€a(w))))-

Letting n — oo, we obtain P(f(w,y(w)), T(w,7(w))) = 0. Hence, f(w,y(w)) € T(w,v(w))
for each w € Q1.

Remark 3.2 Theorem 3.4 is the stochastic version of corollary 2 of Hideaki, Kanekol®l,
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