On Sectional Cycles in Translation Quivers *

YAO Hai-lou, PING Yan-ru

(Dept. of Appl. Math., Beijing University of Technology, Beijing 100022, China)

Abstract: In this paper, we prove that there exists no sectional cycle in a translation quiver under certain conditions. So, we generalize Bautista and Smal ϕ 's corresponding result on AR-quiver of an artin algebra.

Key words: sectional cycles; translation quivers; additive length functions.

Classification: AMS(2000) 16G20, 16G60/CLC number: O153.3

Document code: A **Article ID:** 1000-341X(2003)03-0422-05

In [1], Bautista and Smal ϕ proved a well-known result.

Bautista and Smal ϕ 's Theorem Let \wedge be any artin algebra. Then the Auslander-Reiten quiver of \wedge never contains a sectional path which is a cycle.

In this paper, we will show that Bautista and Smal ϕ 's proof can be translated into a purely combinatorial one. Before we state our combinatorial result for the above theorem, let us fix some terminology.

Let $\Gamma = (\Gamma_0, \Gamma_1, \tau)$ be a translation quiver without loops and multiple arrows, where Γ_0 is the set of vertices, Γ_1 is the set of arrows and $\tau : \Gamma'_0 \to \Gamma_0$ is an injective map for some subset $\Gamma'_0 \subseteq \Gamma_0$. Given a vertex x, denote by x^+ the set of vertices y such that there is an arrow $x \to y$; the set x^- consists of all vertices y such that there is an arrow $y \to x$. A vertex x with $\tau^t x = x$ for some positive integer $t \geq 1$ is said to be periodic. Let $\delta : \Gamma_1 \longrightarrow \mathbb{N} \times \mathbb{N}$ be a map and denote the values by $\delta(\alpha) = (\delta_{x,y}, \delta'_{x,y})$ for each arrow $\alpha : X \longrightarrow Y$, where \mathbb{N} is the set of natural numbers. The triple (Γ, τ, δ) is called a valued translation quiver if the following conditions are satisfied for all non-projective vertices x : (1). $\delta'_{\tau x,y} = \delta_{y,x}$ for all $y \in x^-$. (2). $\delta_{\tau x,y} = \delta'_{y,x}$ for all $y \in x^-$. For any x, y in Γ , if $\delta_{x,y} = \delta'_{x,y} = 1$, Γ is said to be trivially valued. A map $l : \Gamma_0 \to \mathbb{N}$ (the set of natural numbers) is called an additive length function for $\Gamma = (\Gamma_0, \Gamma_1, \tau)$ if the following conditions are satisfied for all vertices x,

1). $l(x) + l(\tau x) = \sum_{y \in x^{-}} \delta_{y,x} l(y)$, if x is non-projective;

Foundation item: Supported by Fund of Educational Ministry of China and the Fund of Education Committee of Beijing.

Biography: YAO Hai-lou (1963-), Professor.

^{*}Received date: 2001-04-26

- 2). $l(x) > \sum_{y \in x^{-}} \delta_{y,x} l(y)$, if x is projective;
- 3). $l(x) > \sum_{y \in x^+} \delta'_{y,x} l(y)$, if x is injective.

Given a quiver Δ , we now define its path category as follows: it is an additive category, with objects being direct sums of indecomposable objects. The indecomposable objects in the path category of Δ are given by the vectices of Δ , and given a, b \in Δ , the set of maps from a to b is given by the k-vector space with basis the set of all paths from a to b. The composition of maps is induced from the usual composition of paths: $(a|\alpha_1, \dots, \alpha_l|b)(b|\beta_1, \dots, \beta_s|c) = (a|\alpha_1, \dots, \alpha_l, \beta_1, \dots, \beta_s|c)$, where $(a|\alpha_1, \dots, \alpha_l|b)$ is a path from a to b, and $(b|\beta_1, \dots, \beta_s|c)$ is a path from b to c.

Given a translation quiver $\Gamma = (\Gamma_0, \Gamma_1, \tau)$, a polarization of Γ is given by an injective map σ : $\Gamma_1' \longrightarrow \Gamma_1$ where Γ_1' is the set of all arrows α : $a \longrightarrow b$ with b not projective, such that $\sigma(\alpha)$: $\tau b \longrightarrow a$ for α : $a \longrightarrow b$. In case Γ has no multiple edges, there is a unique polarization. Given a translation quiver Γ , its mesh category $k(\Gamma, \sigma)$ can be defined as follows. First, we define the mesh ideal in the path category of (Γ_0, Γ_1) as the ideal generated by the elements

$$m_z = \sum_{y \in z^-} \sum_{\sigma: y \to z} \sigma(\alpha) \alpha$$

with z a non-projective vertex. The mesh category $k(\Gamma, \sigma)$ is defined as the quotient category of the path category of (Γ_0, Γ_1) modulo the mesh ideal. In case Γ is a translation quiver without multiple edges, σ is uniquely determined by Γ , thus we denote the corresponding mesh category just by $k(\Gamma)$.

We define the radical of the mesh category $k(\Gamma)$ as follows: If X, Y are indecomposable (that is, they are vertices in Γ), let rad(X,Y) be the set of non-invertible morphism from X to Y. The powers of the radical are defined inductively as $\operatorname{rad}^{i+1}(X,Y) = \{f \in X \mid f \in Y\}$ $\operatorname{Hom}_{k(\Gamma)}(X,Y) \mid \exists M \in k(\Gamma) \text{ and } g \in \operatorname{rad}^i(X,M), h \in \operatorname{rad}(M,Y) \text{ with } f = hg\}.$ Now, the infinite radical is defined as $\mathrm{rad}^\infty(X,Y) = \bigcap_{i < \infty} \mathrm{rad}^i(X,Y)$.

A sectional path is a chain of vertices x_i and arrows $x_i \longrightarrow x_{i+1}$ in Γ such that

 $x_{i+2} \neq \tau^{-1}x_i$. A sectional path which is an oriented cycle will be called a sectional cycle.

Theorem Let $\Gamma = (\Gamma_0, \Gamma_1, \tau)$ be a connected translation quiver without loops and multiple arrows. Assume there is an additive length function on a translation quiver $\Gamma = (\Gamma_0, \Gamma_1, \tau)$ with the property that $l(x) \neq l(y)$, for any arrow $X \longrightarrow Y$ in Γ , and $k(\Gamma)$ is the mesh-category. Assume moreover that for any $x \in \Gamma_0$ there exists a natural number n(x) such that $rad^{n(x)}(x,x)=0$. Then there is no sectional cycle in Γ .

For any artin algebra Λ , let mod Λ denote the category of finitely generated Λ -modules. Then we know that the radical of End(A) is nilpotent for any Λ -module A in mod $\Lambda^{[2]}$. So, our theorem implies Bautista and smal ϕ 's theorem since there is an additive length function on AR-quiver $\Gamma(\Lambda)$ of the artin algebra Λ , and for any irreducible morphism $f:A\longrightarrow B$ in $\Gamma(\Lambda)$, f is either monomorphism or epimorphism and thus $l(A)\neq l(B)$.

Now we are going to prove our theorem. In the following we assume that Γ is the translation quiver which satisfies the conditions in our theorem. It suffices to prove the non-existence of a minimal sectional cycle in the translation quiver which satisfies the conditions in our theorem. Hence, when we refer to a sectional cycle, we will always assume the following indexing

$$x_0 \longrightarrow x_1 \longrightarrow x_2 \longrightarrow \cdots \longrightarrow x_{n-1} \longrightarrow x_0$$

where $x_0 = x_n$ and $x_i \neq x_j$ when $i \neq j$ and i, j < n. Thus we only need to give the indices modulo n when we are dealing with a sectional cycle. We can use the following picture.

Lemma 1 Let \mathcal{X} be a sectional cycle in Γ , then no x_i is injective or projective.

Proof Let us choose i such that $l(x_i)$ is minimal in the set $\{l(x_j) \mid x_j \text{ in } \mathcal{X}, \text{ for } j = 0, 1, 2, \dots, n-1\}$. As the arrow $x_i \longrightarrow x_{i+1}$, we know that $l(x_i) < l(x_{i+1})$. Then x_i is not injective, furthermore, as $l(\tau^-x_i) + l(x_i) \ge \delta_{x_{i+1},x_i}l(x_{i+1})$, we have that $l(\tau^-x_i) \ge \delta_{x_{i+1},x_i}l(x_{i+1}) - l(x_i) \ge l(x_{i+1}) - l(x_i)$. Hence, $l(x_{i+2}) + l(\tau^-x_i) - l(x_{i+1}) \ge l(x_{i+2}) + l(x_{i+1}) - l(x_i) - l(x_{i+1}) = l(x_{i+2}) - l(x_i) \ge 0$.

Thus, x_{i+1} is not injective and $l(\tau^-x_{i+1}) \ge l(x_{i+2}) + l(\tau^-x_i) - l(x_{i+1}) \ge l(x_{i+2}) - l(x_i)$. Now by induction on j we get $l(x_{i+j+2}) + l(\tau^-x_{i+j}) - l(x_{i+j+1}) \ge l(x_{i+j+2}) + l(x_{i+j+1}) - l(x_i) - l(x_{i+j+1}) = l(x_{i+j+2}) - l(x_i) \ge 0$. So, x_{i+j+2} is not injective for any j.

Dually, we can show that no x_i is projective.

Lemma 2 If there exists a sectional cycle \mathcal{X} in Γ , then the meshes in Γ are of the form

$$au^{-(k+1)}x_{i-1}$$
 $au^{-k}x_i$
 $au^{-k}x_{i+1}$
 $au^{-k+1}x_i$, $k \in \mathbf{Z}$.

Thus, Γ contains neither projective vertices nor injective vertices, and all vertices in Γ are of the form $\tau^{-k}x_i$, $i=0,1,\cdots,n-1$, and $k\in \mathbb{Z}$, and Γ is trivially valued.

Proof Consider the sectional cycle \mathcal{X} , then by Lemma 1, no x_i is projective or injective and hence, τ^- and τ -translates of the sectional cycle is a sectional cycle. So, by induction on k using Lemma 1, we get that the τ^{-k} and τ^k -translates of the sectional cycle are sectional cycles. Thus, for any $k \in \mathbf{Z}$ and $i = 0, 1, \dots, n-1, \tau^{-k}x_i$ is neither projective nor injective. Further, for any $k \in \mathbf{Z}$ and $i = 0, 1, \dots, n-1$, we have the follwing sub-quiver,

Thus, we have

$$l(\tau^{-k}x_i) + l(\tau^{-(k+1)}x_i)) \geq \delta_{\tau^{-k}x_{i+1},\tau^{-(k+1)}x_i}l(\tau^{-k}x_{i+1}) + \delta_{\tau^{-(k+1)}x_{i-1},\tau^{-(k+1)}x_i}l(\tau^{-(k+1)}x_{i-1})$$

for all $k \in \mathbf{Z}$ and $i = 0, 1, \dots, n-1$, where $\delta_{\tau^{-k}x_{i+1}, \tau^{-(k+1)}x_i} \ge 1$ and $\delta_{\tau^{-(k+1)}x_{i-1}, \tau^{-(k+1)}x_i} \ge 1$.

Now, by keeping k fixed and summing over all indices $i \in \{0, 1, \dots, n-1\}$, we get that this has to be an equality, showing that the subquivers are complete meshes and $\delta_{\tau^{-k}x_{i+1},\tau^{-(k+1)}x_i} = 1 = \delta_{\tau^{-(k+1)}x_{i-1},\tau^{-(k+1)}x_i}$.

Therefore, we get that the set $\{\tau^{-k}x_i \mid i=0,1,\cdots,n-1,k\in \mathbf{Z}\}$ is the whole set Γ_0 of the translation quiver Γ since the set does not contain injectives or projectives, and is closed with respect to meshes and Γ is trivially valued.

Lemma 3 If there is a sectional cycle \mathcal{X} in Γ , then no x_i is τ -periodic.

Proof By Lemma 2, the translation quiver Γ is stable, and every mesh is a rectangle. So, if one of x_i is τ -periodic, by using Happel-Preiser-Ringel theorem^[5] and Lemma 2, we know that $\Gamma \simeq \mathbf{Z} \mathbf{A}_t/(\tau^{\mathbf{m}})$. Hence, we get that $\mathrm{rad}^m(x_0, x_0) \neq 0$ for any natural number m since $x_0 \to x_1 \to x_2 \to \cdots \to x_{n-1} \to x_0$ is sectional. This contradicts the condition that there is a natural number n(x) such that $\mathrm{rad}^{n(x)}(x, x) = 0$ for any x. So, no x_i is periodic in \mathcal{X} .

Lemma 4 Let \mathcal{X} be a sectional cycle in Γ . Then

- a). for any $p, q \in \{0, 1, 2, \dots, n-1\}$ and $0 \neq k \in \mathbb{Z}$, we have that $x_p \not\simeq \tau^{-k} x_q$.
- b). $\operatorname{Hom}_{k(\Gamma)}(x_p, \tau x_q) = \operatorname{rad}_{k(\Gamma)}^{\infty}(x_p, \tau x_q)$ for all $p, q \in \{0, 1, 2, \cdots, n-1\}$.

Proof a). Assume that $x_p \simeq \tau^{-k}x_q$ for $0 \neq k \in \mathbb{Z}$ and $p,q \in \{0,1,2\cdots,n-1\}$. Then $p \neq q$ by Lemma 3. Further, if $x_p \simeq \tau^{-k_1}x_q$ and $x_p \simeq \tau^{-k_2}x_q$ with $k_1, k_2 \in \mathbb{Z}$, $k_1 \neq 0, k_2 \neq 0$, then $x_q \simeq \tau^{k_1-k_2}x_q$. Hence $k_1 = k_2$ by Lemma 3. Therefore, for each pair p,q in $\{0,1,2\cdots,n-1\}$, there exists at most one k such that $x_p \simeq \tau^{-k}x_q$. So, we have the following mesh in Γ ,

Hence by Lemma 2, x_{p+1} is either isomorphic to $\tau^{-k}x_{q+1}$ or isomorphic to $\tau^{-(k+1)}x_{q-1}$. By the choice of k, we have $x_{p+1} \simeq \tau^{-k}x_{q+1}$. By induction on j we get that $x_{p+j} \simeq \tau^{-k}x_{q+j}$

and therefore τ^{-k} permutes the set $\{x_0, x_1, \dots, x_{n-1}\}$. Then some power of τ^{-k} fixes the set, this contradicts Lemma 3.

b). By a) we get that there is a chain of arrows from $\tau^{-k_1}x_j$ to $\tau^{-k_2}x_i$ if and only if $k_2 \geq k_1$. Thus, there is no chain of arrows from x_i to τx_j for any i and j in $\{0, 1, \dots, n-1\}$. Hence, b) follows.

Now, we are ready to prove our theorem.

Assume that Γ contains a sectional cycle \mathcal{X} . Let \mathcal{X} contain n vertices, then we have \mathcal{X} in the form $x_0 \to x_1 \to \cdots \to x_{n-1} \to x_0$. From Lemma 1-4, we know that $\mathcal{C} \simeq \mathbf{Z}\widetilde{A}_{n-1}$. Thus, we know $\mathrm{rad}^m(x_0, x_0) \neq 0$ for any natural number m since $x_0 \to x_1 \to \cdots \to x_{n-1} \to x_0$ is sectional. This contradicts the condition that for any x there exists a natural number n(x) such that $\mathrm{rad}^{n(x)}(x, x) = 0$. This completes the proof.

Acknowledgement The first author would like to thank professor I. Assem for his helpful discussion when he visited the university of Sherbrooke in Canada.

References:

- [1] BAUTISTA R, SMALΦ S O. Nonexistent cycles [J]. Comm. Algebra, 1983, 11(16): 1755-1767.
- [2] AUSLANDER M, REITEN I, SMAL S O. Representation Theory of Artin Algebras [M]. Combridge Press, 1995.
- [3] RINGEL C M. Tamed Algebras and Integral Quadratic Forms [M]. Lecture Notes in Mathematics 1099, Springer-Verlag, 1984.
- [4] KRAUSE H. On the four terms in the middle theorem for almost split sequences [J]. Arch. Math., 1994, 62(6): 501-505.
- [5] HAPPEL D, PREISER U, RINGEL C M. Vinberg's Characterization of Dynkin Diagrams Using Subadditive Functions with Application to DTr-Periodic Modules [C]. Representation Theory II. Lecture Notes in Mathematics 832, Springer-verlag, 1980, 280-292.

关于平移箭图上的截点圈

姚海楼, 平艳茹

(北京工业大学应用数学系, 北京 100022)

摘要:在本文中,我们证明了在一定条件下平移箭图中不存在截点圈 (sectional cycle), 从而推广了在阿丁代数的 AR- 箭图上 Bautista 和 Smalø 的相应结果.

关键词: 截点圈; 平移箭图; 加性长度函数.