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Admissible Meromorphic Solutions of a Type of
Higher-Order Algebraic Differential Equation *
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Abstract: Using Nevanlinna theory of the value distribution of meromorphic functions,
we investigate the form of a type of algebraic differential equation with admissible mero-
morphic solutions and obtain a Malmquist type theorem.
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1. Introduction and main result

In 1978, N.Steinmetz investigated the existence problem of admissible solutions of
algebraic differential equation of the form

Qz,w) = H(z,w), (1)

where Q(z,w) = ¥(; ag)(z)w' (w') .+ (w™)in H(z,w) is quotient of entire function in
variables z and w. He obtained

Theorem A If the differential equation (1) admits an admissible meromorphic
solution w(z), then (1) must be degenerate into a polynomial in w and

degg(z,w) < A,

where A = max{iy + 2i; + ...+ (n + 1)i,}.
In this paper we will consider the existence of admissible solution of gerenal algebraic
differential equations of the form

(Qu(2,0))/(Q(z,w)) = H(z,w), (2)
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where 0, (z,w) = Z(‘_) a(i)(z)wio(wl)il (W™ Qu(z,w) = i) b(j)(z)wjo(wl)jl oo (w(n))a
are differential polynomials with meromorphic coefficients {a(;)} and {b(;)} respectively,
(2),(7) are two finite index sets, H(z,w) is meromorphic function in z and w.

For differential polynomial Q,(z,w), Q2(z, w), we adopt the following notations.

A = max{z G}, u = max{z i}, Ay = ma.x{Z(l + 1)é},
=0 =1 =0

Az = ma.x{Zj;},uz = max{z i}, Az = max{Z(l + )5}
=0 =1 1=0

Definition put Si(r) = X T(r,ai))+ X T(r,b(;)), Se(r) = T(r, H(z,c)),c € C. E = {c} is
() (4)

a finite accumulation set in the complex plane. Let w(z) be a meromorphic solution of (2)
and I be a set of r of finite linear measure. For every such ¢ € E, iflimsup,_, ., ,¢1(S1(r)+
Sc(r))/T(r,w) = 0, we say that w(z) is an admissible solution of (2).

The following result,as well as its proof, need some familiarity with the Nevanlinna
theory, see, e.g.[1] for notations and basic results.

Our main result is:

Theorem 1 If w(z) is an admissible meromorphic solutions of (2), then H(z,w) must be
rational function in w,and the degree of w satisfies

degH (=) < X+ (A - M)(1 - f(w,00)) < A,
where A = max{\;, 2}, A = max{A;, A,},8(w,0) = 1 — limsup N%(r,w)

raw)’

2. Proof of Theorem 1

Let w(z) be an admissible meromorphic solutions of (2). For ¢; € E. Set

'Ql _ Qz _ Ql —-QzH(Z,Cl)
Zrcl)(w— Cl) w—C - H(z,cl)(w—cl)'

(Pl(z;cl) = H( (3)

Because w is a meromorphic solutions of (2), we know that the zeroes of w — ¢; with
multiplicity r; are the poles of ¢;(z;¢;) with multiplicity at most 71 — 1 by (3).
We take ¢;,¢c2 € E, ¢y # ¢z and set
Q] - QzH(Z,Cl) 91 - ngH(Z,Cz)
H(z,e1)(w~c¢1) H(z,e)(w—¢a)
_W[H(z,c2)(w — ¢e2) — H(z,e1)(w — ¢1)] (c1 — e2)Q0H(z,e1)H(z,¢2)

H(z,c2)(w — c2)H(z,¢1)(w — ¢1) H(z,c2)(w — e2)H(z,e1)(w — ;1)
When z is a zero of w — ¢y(or w — ¢z) with multiplicity 7(or 72) being neither poles of
a(), b;) nor zeros and poles of H(z,ci)(k = 1,2), we have
W [H(z,e2)(w — ¢2) — H(z,e1)(w — ¢1)] = (e1 — ¢2)Q2H(2,¢1)H(z,¢2)
=W[H(z,e2)(w—c¢1+¢1~¢a)— H(z,e1)(w — ¢1)] — (€1 — ¢2)Q2H(2,¢1)H(z,¢3)
= W[H(z,¢2)(c1 — ¢2)] = (e1 — €2)02H(z,¢1)H(2,¢2) = 0.

802(2;01,62) =
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It shows that they are poles of ¢2(z;c1, c2) with multiplicity at most 73, — 1 when zeroes of
w— ¢ with multiplicity 7i being neither poles of a;), b(;) nor zeros and poles of H(z, e )(k =
1,2).

In general, we take distinct ¢y, cz,...,¢c; € E and set

er(zie1,. .o ek) =pr-1(z;¢1,. .. ck—1) — Pr-1(2;€1, .. .y Ch—2,Ck)

=(MQk-1(2,w) — D2Qx_2(z,w))/([] H(z,¢;)(w = ¢;)), (4)
J=1

where Q(z,w) is a polynomial of degree k¥ — 1 in w, its coefficients are combination
with H;(z)(7 = 1,2,...,k). By induction, from (4), it is evident that they are poles of
ek(z;€1,...,c) with multiplicity at most 7; — 1 when zeroes of w — ¢; with multiplicity
7; being neither poles of a(;y and b(;) nor zeros and poles of H;(z).

Next we prove that ¢, = 0 if w(z) is an admissible solution of the differential equation
(2).

Suppose deg?*®) = k > A and ¢ # 0, by the first fundamental Theorem of Nevan-
linna, it follows that

k k—1
T(r,w) =T(r,w - )+ O0(1 H - ¢;)/ JT(w = ¢;)) +o(1)
j=1 i=1
rw/H w - ¢j) +TT¢L/H — ¢;)) + 0(1). (5)
Now we estimate T'(r, ¢/ Hj;l (w = ¢;)) and T(r, pr/ H?zl(w —¢;)). Let £k > A. Then
m(r, Tt )
jljl(w - ¢j)
= m(r Q1Qk-1(2,w) — Q2Qs_2(2,w) )
! k-1
jlel H(z,¢5)(w ~ Cj)jlzll(w - ¢;)
01Qk_1(z,w QQ1_o(z,w
Sm(r, - Qk l( k_)l )+m(r, - 2QL 2( k_)l )+0(1)
J_Ell H(z,c;)(w — ¢;) jrzll(w - ¢;) jI;_ll H(z,¢;)(w — ¢;) Izll(w - ¢;)
Q —1{ 2, W
L e
H (w—¢;) I_T (w—cj) .Ile(w—Cj)
Qk 2(z, w)
mr oy )+ 23 m(n )+ O(1).
w— e (Z c;)
Tw-c)
We note that
w |<j ¢ +t <, +
I‘w—le S 1+ ]w—c]| S (1+‘ JI)(lw_cjl) S (IW—le) ) (6)
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where |a|* = max{1,a|},c = max{1 + |¢;|}. Thus

191/ H(w =) < * Y lagy(2)] H| (Hl(w

k
IQz/IZI( ~¢ I<C'°Z|bg)(2)ll—[l HI

where []; |(1’;’(sz| is product of iy, factors, Hj(}w_l_cj [}t is product of k — A — to(t = ¢,5)
factors. So that

k k w(@)
(e, 0/ [[(w = ) € 3 mlr, =) + X m(r,a) + 0{Y Yomir, “=—)}. (7
j=1 i=1 i
k k
m(r,Qz/ H(w —¢;)) < Zm(r, _— )+ Zm(r b)) + O{Z Em(r } (8)
=1 =1 G0
k-1 k-1
m(r, AWy S i, 1 + 3 mir 1) + 0(1). (9)
M(w-¢) = J i=1
7=1
k-1 k-1
m(r, 220Dy < S (e, L) 4 Y mir, H) 4 0O(1). (10)
Jlw=e) = T

By (7),(8),(9),(10) and logarithmic derivative lemma,we have
)+ 2_mir, a(a))+z m(r, b))+

k-1 k
m(r,ox/ ] (w - ¢;)) <43 m(r,
J=1 J=1 € (9

22 i)+ S(r,w), (11)

where S(r,w) = O{log(rT(r,w))}
Similarly we may deduce that

k k
m(r, o/ [[(w - ¢;)) <4D_ m(r, a@) + Y_m(rb))+
j=1 =1 ()

2Zm(r,HJ~)+S(r,w). (12)

Now we estimate N(r, o1/ H?;:(w —¢;)) and N(», ¢/ H§f=1(w -¢;)). By

Pk 4 Qp-1(z,w) — Q2Qr_2(2,w) (13)
k-1 Tk k-1 ’
Mw-c¢) [ H(ze)w=c;) [1(w-c¢;)
7=1 =1 1=1
— 446 —

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



we know that the poles of ¢/ Hf;ll(w — ¢;) may arise from the following cases:

(i) the poles of {a(;(2)}, {b(;(2)}-
(i) the poles and the zeros of {H;(z)}.
(iii) the zeroes of w — ¢; for which the cases (i) and (ii) are not satisfied.

(iv) the poles of w(z).
For case (i), the contribution to N(r, ¢;/ Hf;ll(w —¢;)) is L N(r,a0)) + X N(r,b;)-

k-1

For case (ii), the contribution to N(r, ¢/ [ (w —¢;))is ¥ N(r,H;) + 3 N(r, 'I}_,)
j=1

For case (iii), the according to the above discussion,each zero with multiplicity ; is

k-1
the poles of ¢/ H (w — ¢;) with multiplicity at most 27; — 1. Thus, the contribution is

at most E [2N( T, oo c_,) - _IV(r, wic,' )l-

For case (iv), if zp is a pole of w with multiplicity 7, then it is the poles of the
denominator of right-side of the equality (13) with multiplicity (2A —1)7, but 2 is at most
the poles of the numerator of right-side of the equality (13) with multiplicity (2A — 1)r.
Hence, it follows that the poles of w(z) doesn’t arise from the poles of ¢4,/ Hf__fll(w - ¢j).

Form the cases (i)-(iv), it yields that

1 k-1
I+ 3 NG H)

’w—Cj

k-1 k-1 1 o
Nl Tl - ) < TRV g0 - B

ZN (r, F + ZN(r ag) + > N(r, b)) (14)

J (4)
In a Similar fashion, we have
k k . 1 k
N(ronl TL(w - ¢3)) € SN (r, ) = W(r, ==—)] + 3" N(r, H)+
7j=1 J=1 CJ .7 Jj=1
k
3 N(r, +§:Nra(, + 3 N(r, b)) (15)
i=1 (7)
Combining (5),(11),(12),(14) and (15), we obtain
k k . k
T(r,w) <8 Z )+ > [4N(r, ) — 2N (r, ]+2ZT(7‘H)+
j=1 — € j=1 — G w- Jj=1
k
Z +2ZTra(, +2ZT r,b(])+S(r w). (16)

H; (i) ()

We choose 17 systems distinct each other {¢;}(j = 1,2,...,17k) and apply the inequality
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(16) to every system, combining the above seventeen inequlities,we deduce

17k 17k

1 — 1
177 (r, w) SSZm(r, p— c.) + Z[4N(1‘, - c.) — 2N (r, — c-)]+
17k 17k 1
2) T(r, H;) + 23 T(r, 1) +343_T(ra) + 343 _T(r. b)) + S(rw).
a = J (i) ()

By the second fundamental theorem of Nevanlinna,we have

17k
17T(r, w) <16T(r,w) + 2> T(r, H;)+
=1
17k) 1
2y T(r, F) +34> T(r,ap) +34)_ T(r,bg) + S(r,w),
i=1 4 () ()

ie.,
17k 17k 1
T(r,w) <4) N(r,H;)+4)_ N(r, F)+17 > T(r,a4))+17)_ T(r,b;))+S(r,w). (17)
=1 =1 ? (3) ()

Because w is an admissible solution, by the inequality (17), we deduce 1 < 0. This is a
contradiction. It follows that ¢ = 0
This proves Theorem 1.
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